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ABSTRACT
Vulnerabilities that disclose executable memory pages en-
able a new class of powerful code reuse attacks that build
the attack payload at runtime. In this work, we present
Heisenbyte, a system to protect against memory disclosure
attacks. Central to Heisenbyte is the concept of destructive
code reads – code is garbled right after it is read. Gar-
bling the code after reading it takes away from the attacker
her ability to leverage memory disclosure bugs in both static
code and dynamically generated just-in-time code. By lever-
aging existing virtualization support, Heisenbyte’s novel use
of destructive code reads sidesteps the problem of incom-
plete binary disassembly in binaries, and extends protection
to close-sourced COTS binaries, which are two major limi-
tations of prior solutions against memory disclosure vulner-
abilities. Our experiments demonstrate that Heisenbyte can
tolerate some degree of imperfect static analysis in disas-
sembled binaries, while effectively thwarting dynamic code
reuse exploits in both static and JIT code, at a modest 1.8%
average runtime overhead due to virtualization and 16.5%
average overhead due to the destructive code reads.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
- Security and Protection

General Terms
Security
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1. INTRODUCTION
In the last decade, with the widespread use of data ex-

ecution protection, attackers have turned to reusing code
snippets from existing binaries to craft attacks. To perform
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these code reuse attacks, the attacker has to “see” the code
so that she can find the “gadgets” necessary to craft the
attack payload. One effective solution, until very recently,
has been fine-grained randomization. The idea is to shuffle
the code to blind the attacker from seeing the code layout
in memory. The assumption behind this approach is that
without knowledge of the code layout, the attacker cannot
craft payloads. However, as demonstrated by Snow et al. in
2013, it is feasible and practical to scan for ROP gadgets at
runtime and construct a dynamic JIT attack payload [22].
The attack by Snow et al. undermines the use of fine-grained
randomization as an mitigation against ROP attacks.

To counter this new threat, researchers have revived the
idea of execute-only memory (XOM) [24]. This approach in-
volves preventing programs from reading executable memory
using general purpose memory access instructions. One chal-
lenge in realizing these systems is that legacy binaries and
compilers often intersperse code and data (e.g. jump tables)
in executable memory pages. Thus, the wholesale blinding
of executable memory at page granularity is not an option.
To tackle this issue, researchers have used static compila-
tion techniques to separate code and data [5]. However, this
solution does not work well in the absence of source code,
for instance, when utilizing legacy binaries. In fact, sepa-
rating data from code has been shown to be provably un-
decidable [28]. Another complication in realizing the XOM
concept arises from web browsers’ use of JIT code where
data becomes dynamically generated code. This has been
shown to be a significant attack surface for browsers [1, 29].

In this work, we propose a new concept to deal with mem-
ory disclosure attacks. Unlike XOM and XOM-inspired sys-
tems, which aim to completely prevent reads to executable
memory, a task beset with many practical difficulties, we
allow executable memory to be read, but make them un-
usable as code after being read. In essence, in our model,
as soon as the code is read using a general-purpose mem-
ory dereferencing instruction, the copy of code in memory is
garbled. Manipulating executable memory in this manner
allows legitimate code to execute without false-positives and
false-negatives, while servicing legitimate memory read op-
erations for data embedded in the code. We term our special
code read operations as destructive code reads.

We implement our new code read mechanism by leverag-
ing existing virtualization hardware support on commodity
processors. We term our system Heisenbyte1.

1A tribute to renowned physicist, Werner Heisenberg, who
observed that the act of observing a system inevitably
changes its state in quantum mechanics.
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Figure 1: TOP: Stages of a code reuse attack that constructs its payload on-the-fly using executable memory
found with a memory disclosure bug. BOTTOM: Taxonomy of defenses grouped by their defense strategy.

Our experiments demonstrate that Heisenbyte can thwart
the use of memory disclosure attacks on executable memory,
both from static program binaries and dynamically gener-
ated JIT code on a production Windows 7 machine at a
modest average runtime overhead of 16.5% and 18.3% on
virtualized and non-virtualized systems respectively.

Our paper makes the following contributions:

1. We conceptualize a novel destructive code read primi-
tive that tolerates legitimate data reads in executable
memory while preventing the same data from being
used as code in a dynamic code reuse attack.

2. We implement Heisenbyte to realize this destructive
code read operation in practice on contemporary com-
modity systems.

3. We demonstrate its utility in preventing attacks that
use memory disclosure bugs on both static program
binaries and dynamic JIT code in close-sourced COTS
binaries.

The rest of the paper is organized as follows. We provide
a background on the threat model in § 2. We detail the
design of Heisenbyte in § 3. We describe the implementation
details and challenges in § 4. We evaluate our system in
§ 5, and discuss the security implications and limitations of
the system in § 6. We cover some related work in § 7, and
conclude in § 8.

2. BACKGROUND
In this section, we describe the steps of a typical dynamic

code reuse attack. Since the use of memory disclosure vul-
nerabilities is crucial in a dynamic code reuse attack (cf.
static code reuse attacks [21, 4]), we will focus on tech-
niques that aim to thwart executable memory disclosures.
We also cover the assumptions of the threat model and the
capabilities of the adversary.

2.1 Dynamic Code Reuse Attacks
In the top half of Figure 1, we show the stages of a typi-

cal code reuse attack, and the sub-steps within each stage.
Typical dynamic code reuse attacks comprise two stages,
namely 1 the search for usable code reuse gadgets in either
static code [22] or dynamic JIT code [1], and 2 building
the payload on-the-fly and then redirecting execution to the
payload.

To gather code reuse gadgets for the dynamic exploit, an
adversary needs to first uncover memory pages that are exe-
cutable. Note that a trivial linear scan of the memory cannot
be used as it is likely to trigger a page fault or access un-
mapped guard pages placed randomly in the address space.
Therefore, to craft a stable exploit, the adversary has to first
gather pointers to the memory pages marked as executable.
These pointers can be direct branches into executable mem-
ory or indirect pointeres residing in data pages but pointing
to code memory.

With the list of the pointers to executable memory, the ad-
versary can then invoke a memory disclosure bug repeatedly
(without crashing the vulnerable program) to scan and dis-
assemble the memory pages looking for suitable code reuse
gadgets. The next step involves stringing the locations of
the gadgets together in an exploit payload, and finally redi-
recting execution to this payload using another control flow
hijacking vulnerability.

2.2 Previous Works
The first category of defenses focuses on protecting the

code pointers and preventing them from being disclosed,
stifling the attack as earlier as possible. Oxymoron hides
the direct code pointers by generating randomized code that
does not have direct references to code pages [3]. However,
besides using direct references to code pages, adversaries can
use indirect code references that reside in stack and heap.
Readactor addresses this by masking the indirect code ref-



erences with executable trampolines that are protected by
hardware virtualization feature [5].

The next set of works introduces the concept of execute-
only memory implemented in software. This is designed to
prevent executable memory from being disclosed directly
through memory read operations, consequently removing
the adversary’s ability to scan and locate suitable code reuse
sequences for the attack. To achieve this, these works have
to separate legitimate data from executable sections of pro-
grams, and distinguish at runtime between code execution
and data read operations in executable memory.

XnR configures executable pages to be non-executable and
augments the page fault handler to mediate illegal reads into
code pages [2], but it is susceptible to disclosure attacks via
indirect code references. HideM leverages the spilt-TLB ar-
chitecture on AMD processors to transparently prevent code
from being read by memory dereferencing operations [10].
The use of split-TLB limits its ability to remove all data
from the executable sections, and inevitably exposes these
data remnants to being used in attacks. Readactor relies on
compiler-based techniques to separate legitimate data from
code in programs and uses hardware virtualization support
to enforce execute-only memory [5].

Unlike the previous defenses that protect the executable
memory from illegal memory reads, the third group of works
tolerates the disclosure of executable memory contents in at-
tacks. It shifts the focus of the defense strategy to preventing
any discovered gadgets from the earlier attack stages from
being used in later stages of attacks. Belonging to this class
of defenses, Isomeron probabilistically impedes the use of
the discovered gadgets by randomizing the control flow at
runtime specifically for dynamically generated code [6].

Our work also falls into this third category of defenses.
While most works either enforce execute-only code memory
or hide important static code contents from adversaries, we
conceal the destructive changes made to executable mem-
ory (when it is read) from the adversaries. Heisenbyte al-
lows legitimate read operations to disclose the contents of
executable memory while keeping the randomized changes
made to the read memory hidden.

This allows us to transparently support existing COTS
binaries without the need to ensure all legitimate data and
code are separated cleanly and completely in the disassem-
bly. The heart of Heisenbyte lies on the assumption that
every byte in the executable memory can only be exclusively
used as code or data.

2.3 Assumptions
We assume a powerful adversary who can read (and write)

arbitrary memory within the address space of the vulnerable
program, and do so without crashing the program. On the
target system, we also make similar assumptions used in
related papers addressing the problem of memory disclosure
attacks. We assume that the target system is equipped with
the following protections:

• W⊕X: Memory pages cannot be both executable and
writable at the same time. This prevents direct over-
writing of existing code or injection of native code into
the vulnerable program. We assume that this also ap-
plies to JIT code generated by programs, i.e. dynam-
ically generated instructions cannot be executed on a
memory page that is writable.
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Figure 2: A typical execution of a jmp instruction
using both code and data interleaved on the same
memory page.

• Load-time fine-grained ASLR: All the static code
from programs and libraries are loaded at random loca-
tions upon each startup. Address Space Layout Ran-
domization (ASLR) reduces the predictability of the
code layout. Furthermore, we require code layouts to
be randomized at a fine granularity so that the regis-
ters [18] used and instruction locations within a func-
tion [15] or basic block [27] are different. Without this,
an adversary can find code pointers in non-executable
memory and infer the code layout of the rest of the
memory without directly reading them.

• Defenses against JIT attacks: We also assume that
fine-grained ASLR is applied to JIT engines [13], ne-
cessitating an adversary to perform a scan of the JIT
memory pages to locate usable code reuse gadgets.

3. HEISENBYTE DESIGN
In this section, we describe our destructive code read prim-

itive and how it thwarts memory disclosure attacks. Since
our goal is to extend protection against memory disclosure
attacks to COTS binaries, we also detail the challenges in
determining static data from code in disassembled binaries
and how they motivate our defense approach.

3.1 Destructive Code Reads

3.1.1 Review of Instruction Pipeline
We briefly review what happens in the CPU pipeline when

an instruction dereferences memory for its data. This is to
familiarize the reader with the distinction between a memory
read or write operation that uses memory as data and an
instruction fetch operation (which is also a special form of
memory read operation) that uses memory as code.

Figure 2 shows the execution of a jmp instruction, a typical
implementation of a switch statement and a very common
example of both code and data residing within the same
memory page marked as executable. To aid explanation, we
present the raw byte representation as well as its disassem-
bled instructions. Without loss of generality, we assume the
use of 4kB memory pages for the rest of our paper. While we
have demarcated the bytes that are intended to be read as
data from those intended to be executed as code, note that



MMU

94 C3 00 00
00 30 00 00
...
33 C0 
FF 24 85
00 01 00 00

0x100:
0x104:
... :

0x200:
0x202:

jmp 0x100[eax*4]

Instruction 
Pipeline

PhysMem

CPU

1

2

3

94 C3 00 00
00 30 00 00
...
33 C0 
FF 24 85
00 01 00 00

Memory marked as 
execute-only

MMU

FF C3 00 00
00 30 00 00
...
33 C0 
FF 24 85
00 01 00 00

0x100:
0x104:
... :

0x200:
0x202:

CPU
4

94 C3 00 00
00 30 00 00
...
33 C0 
FF 24 85
00 01 00 00

MMU

FF C3 00 00
00 30 00 00
...
33 C0 
FF 24 85
00 01 00 00

0x100:
0x104:
... :

0x200:
0x202:

CPU

5

94 C3 00 00
00 30 00 00
...
33 C0 
FF 24 85
00 01 00 00

0x1100:
0x1104:

... :
0x1200:
0x1202:

6

FF FF

(a) Memory read of execute-only memory detected (b) Destructively read executable memory (c) Shellcode uses executable memory read earlier

0x1100:
0x1104:

... :
0x1200:
0x1202:

EIP: 0x202

Shellcode
0x100

EIP: 0x100

Executed:  inc ebx
Desired:  xchg eax,esp
      ret

Figure 3: Destructive code read process.

the processor is oblivious to this; all the processor knows of
is the access permissions of a given memory page.

In Step 1 , the CPU performs a code fetch of the jmp in-
struction from the 0x202 address pointed to by the Extended
Instruction Pointer (EIP). The instruction is decoded and
the CPU determines that it needs to dereference the mem-
ory at a base address of 0x100 and an offset given by the
register eax for its branching destination. Since the address
0x100 is in the virtual addressing mode, the CPU has to
translate the address to the corresponding physical address
via the Memory Management Unit (MMU) in Step 2 . For
simplicity, we assume an identity mapping of the virtual to
physical addresses. Subsequently, the CPU dereferences the
address 0x100 via a memory load operation in Step 3 , and
completes the execution of the jmp instruction.

3.1.2 Destructive Code Read Process
In Figure 3, we detail the process of how destructive code

read can thwart executable memory disclosure attacks. Ev-
ery Windows program binary comes with a PE header that
allows us to parse and identify all static memory sections
that are marked as executable. We maintain a duplicate
copy of these executable memory pages to be used as data
in the event of a memory read dereferencing operation. Fur-
ther, in order to detect read operations in the executable
memory page, we need to mark that page as execute-only.

In Figure 3(a), we show this duplicate page directly be-
low the executable page. Like in the earlier example, the
instruction is fetched at Step 1 , and the memory address
of the data to be dereferenced is translated via the MMU at
Step 2 . When a memory dereferencing for the data address
occurs at Step 3 , this invokes a memory access violation.

The destructive code read begins at this point, shown in
Figure 3(b). When we detect the read operation of the exe-
cutable page, we overwrite the byte at the faulting memory
address with a random byte at Step 4 . At Step 5 , via the
MMU, we redirect the virtual address of the memory read
to a different physical address that points to our duplicate
page. We can then service the read operation transparently
with the original data value at Step 5 , and the instruction
that uses that data can function normally. Next, we show
how these operations, specifically Step 4 , have set up a sys-
tem state that can thwart a memory disclosure attack.

3.1.3 Thwarting Memory Scan Attacks
Since code and data are serviced by separate memory

pages depending on the operation, the bytes that are read
from executable memory pages may no longer be the same
as the ones that can be executed at the same virtual address.

Given that a legitimate application has previously derefer-
enced the memory address 0x100 as data, the code memory
address at 0x100 now contains a randomized byte. Execut-
ing the instruction at this address will lead to unintended
operations. For instance, in Figure 3(c) if the adversary
uses a memory disclosure bug to read the memory contents
of 0x100, she sees the original byte sequence “94 C3”, which
represents a commonly found stack pivot gadget2. Think-
ing that she has found the stack pivot gadget, she sets up
her dynamic code reuse payload to use the address 0x100.
Since the earlier code read operation has “destroyed” the
byte there with the random byte FF, when the code reuse
payload executes the instruction at address 0x100, the gar-
bled byte sequence “FF C3” is executed as inc ebx. This
effectively stems the further progress of the exploit.

3.2 Statically Separating Code and Data
Our use of destructive code reads in Heisenbyte at run-

time is motivated by the (im)possibility of precisely and
completely distinguishing disassembled bytes intended to be
data from those intended to be instructions during runtime.
This leads us to adopt a fundamentally different strategy
from the earlier works that enforce execute-only memory us-
ing compiler-based techniques. Instead of determining the
code or data nature of bytes during offline static analysis and
enforcing runtime execute or read policies based on this, we
infer the code/data nature of bytes at runtime, identify the
inferred data bytes in executable memory, and remove the
possibility of using them as executable code in attacks. We
describe some of the main challenges of accurately identi-
fying data in executable sections of Windows binaries, and
how we sidestep these challenges using binary rewriting.

3.2.1 Challenges in Distinguishing Data from Code
Halting Problem Legitimate data must be separated

out from the disassembled bytes of the executable sections

2A sequence of instructions modifying the stack pointer to
address a code location of the adversary’s choosing
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of the binaries. To do so requires making a judgment on
whether or not a range of bytes is intended to be used as
data at runtime. While heuristics can be used to make that
judgment, this code or data separation task at binary level
essentially reduces to the halting problem because we can
be sure only at runtime when bytes are truly intended to be
code, and yet we want to do this during static analysis [28].

JIT Code Generation Web scripting languages such
as Javascript are optimized for efficient execution by mod-
ern web browsers using just-in-time compilation. While the
newer versions of web browsers like Internet Explorer and
Mozilla Firefox separate the code and data into different
memory pages, with the latter in non-executable ones [1],
the older versions however emit both code and data on same
executable pages. We want to support the use of these legacy
JIT engines.

Corner Cases In our analysis of Windows shared li-
braries, we found that there are many corner cases where
the disassembler cannot accurately determine statically if a
chunk of bytes is intended to be data or code. This stems
from the limitations of the disassembly heuristics used by
the disassembling engine.

A common example of incorrect disassembly is the mis-
classification of isolated data bytes as RET return instruc-
tions within a data block. A RET instruction is represented
in assembly as a one-byte opcode, and can potentially be
a target of computed branch instructions whose destination
cannot be statically decidable. Therefore, the disassembler
frequently misclassifies data bytes that match the opcode
representation of return instructions as code.

We also found situations which assume that code and data
sections are located in a specific layout. For example, in
kernel32.dll, a shared library used by all Windows bina-
ries, the relocation section indicates a chunk of bytes that
are dereferenced as data at the base of the executable .text

section. Because a readable and writable data section .data

almost always follows this .text section, any instruction
referencing this data also assumes that 400 bytes following
this address has to be a writable location. This structural
assumption is extremely difficult to discern during offline
static analysis. If we blindly relocate this data from the ex-
ecutable .text section to another section without respecting
this structural assumption, a crash is inevitable.

3.2.2 Our Conservative Separation Approach
As mentioned previously legacy COTS binaries, especially

Windows native programs and libraries, have substantial
amount of legitimate data interleaved with code in the ex-
ecutable sections. Blindly retaining these data can lead to
exhorbitant overheads in Heisenbyte as read access to each
of the these data items in the executable memory will incur
the overhead of the destructive code read operation.

To mitigate these overheads, we perform very conservative
static analysis to determine well-defined data structures that
can be safely relocated out of the executable sections without
affecting the functionality of the program. For instance, in
many legacy Windows binaries, the read-only data sections
are merged with the code section. This is not a problem
because the format for the data section is well-documented.
Similarly, we also handle well-structured data chunks like
strings, jump tables and exception handling information.
Here, we describe examples of these legitimate data chunks
commonly interspersed with code in the executable sections
of Windows COTS binaries.

Standard data sections Many Windows native bi-
naries have the standard non-executable data-only sections
embedded within the executable .text section. Examples
include the Import Address Table, the Export Address Ta-
ble and debug configuration section.

Merged data sections An optimization technique to
minimize the file sizes of programs is to merge the read-
only data section (.rdata) and the main executable section
(.text)3. This technique is commonly used in Windows
native binaries and shared DLL libraries. We are specifically
targeting the relocation of two types of read-only data in this
section, namely strings and Structured Exception handler
(SEH) structures, since they are well defined.

Jump tables High-level switch statements are imple-
mented as jump instructions and jump tables in assembly.
Compilers typically position the jump table offsets near the
jump instructions that use jump tables. These jump tables
are intended to be dereferenced as data at runtime.

4. SYSTEM IMPLEMENTATION
In this section, we detail the various components of Heisen-

byte, and how we realize the mechanism of destructive code
reads on selected executable memory pages. As shown in
Figure 4, we achieve this in three different stages. We begin
by rewriting the program binaries that we want to protect to
separate specific data from the code in an Offline Prepa-
ration stage. We detail this process in § 4.1.

To ensure that our destructive read operations only ap-
ply to the processes we want to protect, Heisenbyte pro-
cesses targeted executable memory pages in the following
two modes. We discuss each of them in detail in § 4.2.

• Initialization mode: This mode identifies at runtime
selected executable memory pages to protect, and sub-
sequently configures execute-only access permissions
for these pages, in preparation for the next mode.

3This can be achieved using Microsoft Visual Studio com-
piler with the linker flag /merge:.rdata=.text.



• Active monitoring mode: Once the set of executable
pages is configured with the desired EPT permissions,
this mode is then responsible for performing the de-
structive code read operation when it detects a read
operation to an executable page.

Furthermore, to demonstrate that the technique is prac-
tical on COTS binaries, we invest substantial effort in this
work to develop Heisenbyte to work on the primarily close-
sourced Windows OS. The techniques and design presented
in this work can be generalized to other OSes like Linux.

4.1 Offline Static Binary Rewriting
Recognizing well-defined data in disassembly We

use the state-of-the-art commercial disassembler, IDA Pro,
to generate the disassembled code listing of the programs.
We also leverage IDA Pro’s built-in functionality to identify
well-defined data structures (described in earlier sections)
commonly found in executable memory pages.

Rewriting engine We develop our binary rewriting
engine as a Python script. Unlike traditional binary rewrit-
ing tools, we do not perform any rewriting operations that
change the semantics of instructions. Our engine focuses
on using disassembly information from IDA Pro and the
section headers to determine if a range of bytes within an
executable section needs to be relocated to a separate data
section. Our engine reconstructs the PE header to add a
new non-executable section to consolidate all these identi-
fied data. Relocation information is crucial in aiding both
our static analysis and our relocation operations. For exam-
ple, if a range of data bytes needs to be relocated to another
section, the relocation table is updated either by adding new
relocation entries or editing existing ones to reflect the new
location of the relocated data. Relying on the relocation ta-
bles allows us to transparently move bytes around within a
PE file without breaking the functionality of the program.

Overcoming Windows binary protection To evalu-
ate our rewritten Windows native library files with Heisen-
byte, we need to replace the original files. However, on Win-
dows, critical shared libraries and program binaries are pro-
tected by a mechanism called Windows Resource Protection
(WRP) [17]. WRP prevents unauthorized modification of
essential library files, folders and registry entries by config-
uring the Access Control Lists (ACLs) for these protected
resources. Only the Windows Installer service, TrustedIn-
staller, has full permissions to these resources.

To get around this problem, we rely on the fact that we
have administrative privileges on the system. We take con-
trol of the ownership of the protected files from the Truste-
dInstaller account using the command takeown.exe, and
grant to our account full access rights for the protected files
using icacls.exe. At this point, we can rename the files
but we cannot replace the files because they are still in use.
We rename the files and copy our rewritten binaries with
the original filename. When the system is rebooted, our
rewritten libraries will be then loaded into the system. To
ensure integrity of the binaries, the modified ACLs of the
protected binaries are restored after the rewritten binaries
are replaced.

This technique of deploying rewritten Windows native
files work for most of the binaries with one exception – nt-

dll.dll. The integrity of this file is verified when the system
starts up. We solve this by disabling the boot-time integrity
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Figure 5: Nested paging structure using virtualiza-
tion hardware support (using Intel-specific terms).

in the bootloader [11], so that the rewritten ntdll.dll bi-
nary can be loaded.

4.2 Heisenbyte Core Monitoring Components

4.2.1 Review of Intel Extended Page Tables (EPT)
Before we discuss each of the components in the two modes,

we first describe the key hardware virtualization feature we
use to achieve our goals.

Heisenbyte needs to be able to detect when executable
memory is being read. There are a number of ways to do
this: mediating at the page fault handler [2] or leveraging the
split-TLB microarchitecture of systems [10]. These solutions
stem from the limitation of current OSes not being able to
enforce execute-only permissions on memory pages. Fortu-
nately, hardware virtualization support – hardware-assisted
nested paging – on commodity processors provides a means
for us to enforce fine-grained execute-only permissions on
memory pages. This hardware feature augments existing
page walking hardware with the ability to traverse in hard-
ware the paging structures mapping guest physical (P) to
host machine (M) addresses. This eliminates the overhead
involved in maintaining shadow page tables using software.
A virtualization-enabled MMU maps virtual (V) addresses
in the guest to machine physical addresses in the host, using
both the guest page tables and the host second-level page
tables4. This is done transparently of the guest OS.

We show three address spaces spanning across the guest
and host modes in Figure 5. In the guest, the page tables
store the V→P address mappings, as well as the correspond-
ing permission bits. These guest page tables, described ear-
lier, cannot be configured with solely the execute bit set.
Conversely, in the host, the EPTs maintain the P→M ad-
dress mappings. The key difference between the EPTs and
guest page tables is that the EPTs can configure each page
mapping as execute-only. When an access to a memory page
violates the permissions configured for that page, an #EPT

violation is invoked, transferring control to the hypervisor.
This mechanism is instrumental in our system to detect

read operations to executable memory. In our work, like
Readactor [5], we rely on hardware-assisted EPT to config-
ure guest physical memory pages as execute-only with no
read or write access. Since this is a virtualization-assisted
technology, virtualization has to be enabled on the system

4Intel terms this Extended Page Tables(EPT), and AMD
calls this Nested Page Tables (NPT)



we are trying to protect. On systems that need to protect
existing virtualized guests, Heisenbyte can be implemented
within the Virtual Machine Monitor (VMM) software, such
as Xen or KVM. However, the need for virtualization does
not preclude the protection of non-virtualized systems.

To demonstrate this, we make a conscientious effort to
implement Heisenbyte for a non-virtualized OS. We develop
Heisenbyte as a Windows driver that will configure the EPT
paging structures, enable virtualization mode and place the
execution of the non-virtualized OS into virtualized guest
mode (non-root VMX mode). Heisenbyte does this on a
live running system, without requiring any system reboot.
The host mode component (shown in Figure 6) of our driver
ensures that the running system functions as usual, by con-
figuring the EPT structures to use identity mappings from
the guest physical to host machine addresses. At this point,
our host mode component is in a position to configure the
execute-only permissions transparently of the guest OS.

4.2.2 Identifying Executable Memory
Before we can configure the EPT execute-only permis-

sions, we need to first identify which executable memory
pages to monitor. To do that, we have to track when and
where executable memory from processes are loaded and
mapped. Since the treatment of dynamic code tracking is
more involved, we will describe them in detail separately.

Static program binaries To deal with static code,
Heisenbyte guest mode component (as shown in Figure 6) be-
gins its initialization by registering Windows kernel-provided
callback functions associated with the creation/exiting of
processes and loading/unloading of shared libraries. Us-
ing the callback registration APIs, PsSetCreateProcessNo-
tifyRoutine and PsSetLoadImageNotify, our driver guest
component is informed whenever a new static code process
or library gets loaded. This callback mechanism applies to
both executable files and shared library files. If a newly
loaded static image matches within a whitelist of binaries
we are protecting, our guest mode component parses the
memory-mapped PE header to get the list of guest virtual
addresses and sizes of the executable sections in each loaded
image.

With the guest virtual addresses, we need to retrieve the
corresponding guest page table and guest physical addresses
for each virtual memory page to configure the EPT entries.
However, since the OS performs a lazy allocation when do-
ing the memory mapping, these memory pages may not be
paged into memory yet. As a workaround, Heisenbyte sched-
ules a thread within the context of the target process and ac-
cesses one byte in each memory page to invoke the paging-in
mechanism. Further, Heisenbyte uses the MmProbeAndLock-

Pages kernel API to make the pages resident in the physical
memory, so that they cannot be paged out. This necessarily
increases the memory working set of a program. We will
investigate this in § 5.2.2.

These information is stored in a queue buffer shared by
the guest mode and host mode components. It is notewor-
thy that since the guest mode component runs in the VMX
non-root guest mode, it has no access to the EPTs. The
configuration of the EPT mappings has to be performed by
the host mode component.

Dynamic JIT code Unlike the loading of static binaries
into memory, dynamic memory buffer creation/freeing does
not have convenient kernel-provided callbacks. Furthermore,
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Figure 6: Overview of system architecture (Heisen-
byte components are shaded grey).

the protection bits of a dynamic buffer may change at run-
time during the generation and execution of dynamic code.
For example, a modern JIT-enabled browser, like Safari, first
allocates a writable (read/write RW) buffer as a code cache
to fill with generated native code. With our assumption that
hardware W⊕X DEP is enforced, the JIT engine has to re-
move the writable permission and make the code cache exe-
cutable (read/execute RX) before executing the code cache.
If the dynamic code cache subsequently needs to be mod-
ified, the buffer is restored to a writable (read/write RW)
one before changes to the code cache can be made.

Based on the lifetime of the buffer during which the code
is ready to be executed, we observe that we only need to
monitor the buffer during this period of time. Specifically,
we begin tracking a dynamic buffer when the protection bits
changes from non-executable to executable, and stop track-
ing a dynamic executable buffer when it is freed or when its
executable bit is removed.

Windows-specific implementation Next we discuss
how we detect when dynamic memory buffers are turned
executable and when they are freed. All operations that
are used to free or change protection bits of memory result
in two functions in ntdll.dll, NtFreeVirtualMemory, and
NtProtectVirtualMemory respectively, just before invoking
the system calls to the kernel services. When ntdll.dll is
loaded into our target process, we modify the entry points of
these two functions with trampolines to a Virtual Memory
(VM)-tracking code that resides on a dynamically allocated
page. Since the function hooking is performed in-memory,
the OS Copy-on-Write mechanism ensures that these hooks
only apply to the target process.

In practice, dynamic memory buffers are created and freed
very frequently. Since we are only interested in executable
buffers, we use an auxiliary bitmap data page to indicate if
an executable buffer of a given virtual address has been pre-
viously tracked. This added optimization enables the VM-
tracking code to decide if it should handle specific events.

The VM-tracking code that monitors the changing of pro-
tection bits of buffers performs a hypercall to our host mode
component whenever an executable buffer is configured to be
non-executable and vice versa. The host mode component
updates the address bitmap depending on whether a new
executable page is being tracked or removed from tracking.
Conversely, the VM-tracking code that monitors the freeing
of executable buffers will perform a hypercall when it de-
termines from the bitmap that a buffer with a given virtual
address is being freed. The host mode component will then



reset the EPT mapping for the physical pages of the buffer
to an identity mapping, essentially stopping the tracking of
this dynamic executable buffer.

Protecting VM-tracking code and data The VM-
tracking code resides on a dynamically allocated executable
page, and is protected by Heisenbyte just like any typical
executable memory page. Conversely, by being configured
to be read-only from the userspace, the auxiliary bitmap is
protected from any tampering attacks originating from the
userspace; it can only be modified in the host kernel mode
(specifically by the host mode driver component. Further-
more, a XOR-based checksum of the bitmap is maintained
and verified before the bitmap is updated in the host mode
component.

4.2.3 Overcoming Challenges in using EPT
Problem of shared physical memory pages One key

challenge in using EPT to enforce execute-only memory is
that the guest physical memory pages may be shared by mul-
tiple processes due to the OS’s Copy-on-Write (COW) opti-
mization. This COW mechanism is a common OS optimiza-
tion applied to static binaries to conserve physical memory
and make the startup of programs faster. Thus the OS lazily
duplicates the original page into a newly allocated physical
page only when the process writes to the memory page. Be-
fore these physical memory pages are duplicated by COW,
they are shared by multiple processes. Enforcing execute-
only permissions on these shared guest physical pages may
result in many #EPT violations triggered by processes we do
not care about and cause unnecessary overhead.

Inducing COW on physical pages Heisenbyte over-
comes this problem by inducing COW on the executable
memory pages of target processes. We leverage the guest
OSes’ innate COW capability to transparently allocate new
physical memory pages for the static code regions of pro-
cesses we want to protect. To invoke COW on the memory
pages of processes, the write operation must occur in the
context of the process; a write operation originating from
the hypervisor into the memory space of a user process will
not trigger the copy-on-write mechanism.

When a static binary is loaded into memory, Heisenbyte
schedules an Asynchronous Procedure Call thread [16] to
execute in the context of the target process. This thread
suspends the execution of the original target process, enu-
merates the static code regions of the process using the
PE headers mapped in the address space, and performs a
read and write operation on each executable memory page.
This identity-write operation is very efficient since we only
“touch” one byte in each 4kB memory page. The OS detects
this memory write and invokes the COW mechanism. In
this manner, each executable static page in a process will no
longer share a physical page with another process.

The executable memory pages are then configured to be
read-only using EPT by the host mode component only after
the COW-inducing thread has completed processing all the
executable memory pages of the newly loaded binary.

4.2.4 Intervention with Code Garbling
Maintaining separate code views To enable our de-

structive code read operations while allowing legitimate data
reads in executable memory to function properly, we need to
maintain separate code and data views for each executable
memory page we are protecting. We leverage the EPT to
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Figure 7: Using EPT to maintain separate code and
data views transparently.

transparently redirect the use of any guest virtual address to
the desired view at runtime. In Figure 7(a), before a target
process is being protected, an identity EPT mapping of the
guest physical to host machine memory is maintained.

After identifying the guest physical memory pages to pro-
tect, we add a duplicate page in the host machine address
space. Any subsequent instructions being executed are redi-
rected to the code copy memory page shown at the bottom
of Figure 7(b). This guest physical page is configured to be
execute-only using EPT.

Destructive reads into executable memory With
the executable pages configured to trigger a VM exit upon
a data read, our #EPT violation handler in the host mode
component of the driver can intervene and mediate at these
events. At each #EPT read violation, we overwrite the data
read address within our code copy page with a random byte.
This constitutes the destructive nature of our code reads.
Since there are legitimate data reads into executable mem-
ory from the kernel, especially during PE loading, we per-
form the byte garbling only when the read operation origi-
nates from user-space.

Next we edit the EPT entry to have read/write/execute
access and redirect the read operation to read from the orig-
inal code page, now intended exclusively to service data read
requests, as shown in Figure 7(c). To restore the memory
protection, we set the single-step trap flag in the EFLAGS
so that a VM exit is triggered immediately after the instruc-
tion performing the read operation. At this point, we restore
the EPT permissions to execute-only to resume operation.



5. EVALUATION
In this section, we demonstrate the utility of Heisenbyte

in stopping attacks that use static and dynamic memory
disclosure bugs. We evaluate the performance and memory
overhead of our system. Our experiments are done on 32-bit
Windows 7 running on a quad-core Intel i7 processor with
2GB RAM. As our prototype does not handle SMP systems,
we configure the system to use only one physical core.

5.1 Security Effectiveness

5.1.1 Memory Disclosure Attack on Static Code
We use the Internet Explorer (IE) 9 memory disclosure

vulnerability (CVE-2013-2551) presented by Snow et al. [22].
This is a fairly powerful heap overwrite vulnerability involv-
ing a Javascript string object. It enables an adversary to
perform arbitrary memory read and write operations repeat-
edly without causing IE to crash. On our test setup, we
craft an exploit that leverages this memory disclosure bug
as a memory read and write primitive.

As ASLR is enabled by default – Window’s ASLR is a
coarse-grained form that changes only the base addresses of
the shared libraries at load time –, the exploit has to look for
suitable code reuse “gadgets” to string together as an attack
payload. To demonstrate that our system works with an
exploit that uses disclosed executable memory contents, we
craft our exploit to dynamically locate a stack pivot ROP
gadget.

The exploit begins by first leaking the virtual table pointer
associated with the vulnerable heap object. This pointer
contains an address in the code page of VGX.dll shared li-
brary. Using the memory read primitive, the exploit scans
backwards in memory for the PE magic signature MZ to
search for the PE header of the shared library.

It is noteworthy that at this point, if IE uses any code
within the range of bytes the exploit has scanned, IE will
crash due to the corruption of legitimate code by the destruc-
tive code reads. However, in a real deployment, as defenders,
we do not want to rely on such opportunistic crashes. We
assume that the exploit avoids scanning executable memory
during this stage and only reads non-executable memory.

When the exploit finds the PE header of the library, it can
then derive the base address of user32.dll by parsing the
import address table in the PE header. The shared library
user32.dll contains a set of ROP gadgets that are found
offline. With this, the exploit can construct its ROP pay-
load by adjusting the return addresses of the pre-determined
ROP gadgets with the base address of user32.dll. To sim-
ulate the dynamic discovery of “gadgets” in a dynamic code
reuse exploit, we craft the exploit to perform a 4-byte mem-
ory scan at the location of the stack pivot gadget, and then
redirect execution to that stack pivot gadget.

While our actual system uses a randomized byte to garble
the code, we use a fixed 0xCC byte (i.e. a debug trap) for
the code corruption in this experiment. This allows us to be
sure that any crash is directly caused by our destructive code
reads. When control flow is redirected to the stack pivot
gadget, IE crashes at the address of the stack pivot with a
debug trap. This demonstrates that Heisenbyte stems the
further progress of the exploit as a result of corrupted byte
caused by the exploit’s executable memory read.

Furthermore, we configure the Windbg debugger to au-
tomatically launch upon application crash. When the de-
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Figure 8: SPEC2006 execution overhead.

bugger is invoked at the crash address at the location of the
stack pivot, the debugger displays and disassembles the orig-
inal byte sequence of the stack pivot gadget in user32.dll.
As the debugger reads memory as data read operations, the
original bytes at that code address are shown. It is appar-
ent that what gets executed is different from what gets read.
This further demonstrates that Heisenbyte correctly main-
tains separate code and data views of executable memory.

5.1.2 Memory Disclosure Attack on Dynamic Code
At the time of writing, we are aware of only one pub-

licly available exploit [19] that uses an integer overflow bug
to achieve memory read/write capability on the JIT code
cache of mobile Chrome. However, this exploit only works
on ARM devices, so we cannot use this for our evaluation.

To evaluate our system on memory disclosure attack on
dynamically generated code, we create a vulnerable program
that mimics the behavior of JIT engine in the creation of dy-
namic executable buffers. Our program allocates a readable
and writable buffer and copies into this buffer a pre-compiled
set of instructions that uses a jump table. This is similar
to the behavior of legacy JIT engines that emit native code
containing both code and data in the dynamic buffer.

With the code cache ready to execute, our program makes
the dynamic buffer executable by changing the permission
access to readable/executable, and executes the buffer from
the base address of the buffer. The program functions cor-
rectly with Heisenbyte running. Since the jump tables in
the dynamic buffer are only ever used as data in the life-
time of the buffer, Heisenbyte properly supports the normal
functionality of the simulated JIT-ed code.

To simulate an attack that scans the memory of the dy-
namic code region for code reuse gadgets, we create an ex-
ploit to leverage a memory disclosure bug we have designed
into the program. The exploit uses this bug to read the first
four bytes of the dynamic buffer and redirects execution con-
trol to the start of the dynamic buffer. Like in the case of
the experiment with IE9, the vulnerable program crashes at
the base address of the dynamic buffer as a result of the
destructive code reads induced by Heisenbyte.

5.2 Performance Overhead

5.2.1 Execution Overhead
We measure the slowdown caused by various components

of Heisenbyte using the SPEC2006 integer benchmark pro-



grams. Since our solution works on and rewrites binaries,
we first compile the programs and work with the compiled
binaries assuming no source code is available. We compile
the SPEC2006 programs with Microsoft Visual Studio 2010
compiler using the default linker and compilation flags. As
the compiler does not support the C99 feature, e.g. type
_complex, we cannot successfully compile 462.libquantum.
We thus use only 11 out of 12 SPEC2006 integer applica-
tions for our evaluation. For all the tests, we restart each set
of runs on a rebooted system, perform 3 iterations using the
base reference input and take the median measurements.

We evaluate the execution slowdown caused by Heisenbyte
to an originally non-virtualized system. The overhead of
Heisenbyte comprise two main sources, namely the overhead
as a result of virtualizing the entire system at runtime, and
the overhead of incurring two VM exits for each destructive
code read operation. Separating the measurements for the
two allows us to evaluate the overhead net of virtualization
when Heisenbyte is deployed on existing virtualized systems
(they are already occurring the virtualization overhead).

To measure the overhead caused by purely virtualizing
the system, we run the SPEC benchmarks with the Heisen-
byte driver loaded, but without protecting any binaries or
shared libraries. Compared to a baseline system, the vir-
tualization overhead ranges from 0% (401.bzip2) to 9.6%
(429.mcf). The virtualization overhead is highly dependent
on the execution profile of the programs. We attribute the
high overhead for 401.bzip2 to the paging operations per-
formed by Intel EPT hardware page walker. On average,
the geometric mean of the virtualization overhead caused
by Heisenbyte is 1.8% across all the programs.

With the measurements for the virtualization overhead,
we can now measure the overhead of the destructive code
reads due to the incomplete removal of legitimate data from
the executable memory pages. We configure Heisenbyte to
protect the SPEC binaries and all the shared DLL libraries
used by SPEC, and compare the execution time to the base-
line. The variance in this overhead is huge, depending on
how much legitimate data is not removed by the binary
rewriting. The destructive code read overhead ranges from
0% (401.bzip2) to 62% (400.perlbench), with an average
of 16.5% across the programs. This overhead is a direct con-
sequence of the imperfect removal of legitimate data from
the executable memory pages at the binary rewriting stage.
The higher the frequency a program accesses such legitimate
data in the memory pages, the greater the overhead incurred
by the destructive codes. The average of the combined vir-
tualization and destructive code read overhead is 18.3%.

In this work, we choose to be very conservative in the
types of data that we relocate out of the executable sections
during the binary rewriting to show that the system can
still tolerate the incomplete relocation of all data from the
executable sections. This overhead can be further reduced
with a more aggressive strategy in removing the data.

5.2.2 Resident Memory Overhead
As discussed in § 4.2.2, Heisenbyte requires keeping the

executable memory pages resident in physical memory when
configuring the EPT permissions and monitoring for data
reads to these pages. Here we evaluate how much more
physical memory overhead introducing Heisenbyte causes.
We measure this by tracking the peak Resident set size (RSS)
of a process over entire program execution. RSS measures
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Figure 9: Memory overhead in terms of peak RSS.

the size of process memory that remains resident in the RAM
or physical memory. We inject a profiling thread to our
processes to log the current maximum RSS as the process
runs every 20 seconds. Figure 9 shows a modest increase of
0.8% on average in the peak RSS across all the programs.

6. DISCUSSION
Code leaks via side channels While Heisenbyte thwarts

the use of the disclosed gadgets found by directly scanning
executable memory with a memory disclosure bug, it does
not protect against attacks that indirectly leak the locations
of code reuse gadgets through side channels, such as tim-
ing channels [20, 9]. Comprehensive protection against side
channel leaks is generally recognized as a prohibitively chal-
lenging tasks in the general context, and not just pertaining
to the disclosure of executable memory.

Our work focuses on protecting client-side COTS binaries
prevalent on Windows systems. Most of these programs are
not tolerant of crashes. Furthermore, exploiting these user
applications is time-sensitive. For example, an attacker loses
the opportunity to exploit the system once its exploit invokes
a crash on IE or takes too long. These aforementioned rea-
sons make existing side channel-based memory disclosure
attacks on this class of binaries challenging. Therefore, we
do not consider this type of attacks in our work.

Size of garbled code At present, Heisenbyte disregards
the operand size of the instruction performing the reads into
the executable memory, and performs destructive code reads
of only one byte. An adversary who uses data reads of four
bytes to scan the memory can potentially exploit this. Gar-
bling only one byte will give the adversary the potential to
use the remaining three bytes from the data reads. To tackle
this problem, Heisenbyte can easily be extended to handle
code reads using different operand sizes. We can maintain
three hashtables, each storing the opcodes used for 1-byte,
2-byte and 4-byte operands. Whenever a code read hap-
pens, Heisenbyte can look up the hashtable to determine
efficiently the size of operand and destroy the same number
of bytes accordingly.

Support for fine-grained ASLR Heisenbyte requires
fine-grained ASLR to ensure that the layout of code cannot
be inferred with partial reads into the non-executable sec-
tions [20, 9]. Fine-grained ASLR can be extended in Heisen-
byte in a number of ways. For example, since we are rewrit-
ing the binaries, fine-grained ASLR such as in-place code
randomization [18] can be extended into the rewriting pro-
cess. As no additional code is introduced, such in-place code



randomization have limited impact on code locality and, as
past research has shown, incurs negligible runtime overhead.

New hardware features to reduce overhead In this
work, we choose to implement Heisenbyte with the standard
virtualization features found in most processors. The goal is
to provide a baseline proof-of-concept implementation of our
design. As we have seen in § 5.2, the major source of over-
head comes from inducing the VM exits to implement the
destructive code reads. This can be reduced substantially
with the combined use of two new virtualization features
in the recent Haswell processor [14]. This processor allows
selected #EPT violations to be converted to a new type of
exception that does not require VM exits to the hypervisor.
The latency of VM exits can then be reduced substantially.
This exception is known as the #VE Virtualization Excep-
tion. With this feature, during the active monitoring mode,
a data read into protected executable memory pages will
trigger an exception and control will be handed over to the
guest OS #VE Interrupt Service Handler (ISR). To handle
the configuration of EPT entries, the second feature, named
EPT Pointer switching, allows the guest OS to efficiently se-
lect within a pre-configured set of EPT pointers having the
required EPT permissions we need.

Code read logs to guide binary rewriting As an op-
timization to aid the offline static analysis, we can augment
Heisenbyte to record all read operations into executable mem-
ory into a log buffer. This log can then be used to direct the
static analysis in determining if a set of bytes within an ex-
ecutable section is indeed intended as data at runtime. The
binaries can be analyzed and rewritten repeatedly using this
information to achieve a high code coverage over time. This
can further reduce the overhead of the system, since the data
reads that previously trigger VM exits will no longer occur.

Graceful remediation In additional to detecting at-
tacks, Heisenbyte can offer the capability to gracefully termi-
nate, instead of crashing, the process that is being targeted
by the attack, and provide further alerting information re-
garding the attack to the user. Instead of using random-
ized junk bytes for the destructive code reads, Heisenbyte
can use specific bytes designated to induce selected software
interrupts or traps when executed. The host component of
Heisenbyte can be configured to mediate on these interrupts.
When malicious code attempts to execute code modified by
earlier reads, pertinent information about the attempted
code execution, such as the faulting instruction, and the
original and modified contents of the executable memory
page, can then be logged. This may assist in identifying the
associated vulnerability, and provide useful forensics infor-
mation for vendors to patch the program.

7. RELATED WORK
Our work is enabled by two key techniques, namely the

ability to maintain separate code and data views in a von
Neumann memory architecture5, and destructive read op-
erations applied on executable memory. We have described
the research works most closely related to our work in § 2.2.
Here we detail other works using the above two techniques.

Maintaining separate code/data views Many have
explored the value of maintaining separate views for code
and data. The earliest works are mostly offensive in nature.

5where code and data are stored in the same addressable
memory

Van Oorschot et al. leverage the process of desynchroniza-
tion the TLB to bypass self-hashing software checks [26].
Shadow Walker, a rootkit, relies on the split-TLB architec-
ture of processors to hide its malicious code from being de-
tected by code scans by Antivirus [23]. Torrey explores the
use of EPT to differentiate code from data at runtime to per-
form attestation on dynamically changing applications [25].
Spider also uses EPT permissions to maintain different views
for code and data to implement the evasion-resistant break-
points that are “invisible” to the guest [7]. Our work shares
similar EPT-based techniques with some of these works, al-
beit towards vastly different objectives.

Destructive reads Examples of destructive read op-
erations in practice are sparse. The destructive-read em-
bedded DRAM [8] is a special-purpose DRAM that allows
destructive reads to conserve power consumption. The con-
tents of the memory can only be read once. At the software
level, destructive read operations are sometimes performed
by the BIOS during the memory check in its Power-On Self
Test (POST), with the purpose of ensuring sensitive mem-
ory contents cannot be leaked [12]. Our software-emulated
destructive read primitive on executable memory represents
the first work to apply this technique to make system states
non-deterministic and harder for adversaries to exploit.

8. CONCLUSIONS
We present the novel use of destructive code reads to

restrict adversaries’ ability to leverage executable memory
that are exposed using memory disclosure bugs as part of
an attack. We realize this technique in Heisenbyte using ex-
isting hardware virtualization support to identify read op-
erations on executable memory. To date, Heisenbyte is the
first system that guarantees the disclosed executable mem-
ory cannot be executed as intended, while still tolerating
some degree of data not removed from the code pages. Our
experiments demonstrate that Heisenbyte prevents the use
of disclosed executable memory in real and synthetic at-
tacks, while offering transparent protection for legacy close-
sourced binaries, at modest overall runtime overheads aver-
aging 18.3%. Amongst defenses that work on breaking de-
terminism in systems, Heisenbyte represents a resolute and
effective step towards stopping advanced exploits.
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