HEISENBYTE:

Thwarting Memory Disclosure Attacks
using Destructive Code Reads

Adrian Tang

Simha Sethumadhavan
Salvatore Stolfo

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK CCS 2015 - Oct 12-16, Denver, us

1/21

Key Idea: Destructive Code Reads

Problem

Executable memory can be read

Memory disclosure bugs

. \ 4
Dynamic code reuse attacks

Our Solution

Make executable memory indeterminate after it has been read

Our Inspiration

Observer Effect:

“The act of observing a system inevitably changes
the state of the system.”

HEISENBYTE’s destructive code reads:

“Reading executable memory changes the
executable state of the read memory.”

Executing memory after reading it yields
Werner Heisenberg, in 1933 unpredictable behavior

(German theoretical physicist)

Image credits: Wikipedia

2/21

3/21

HEISENBYTE in a Slide

Dynamic
Code Reuse Attack

N\

~Memory disclosure
+
€@ Scan memoryat
runtime for gadgets
+
e Chain gadgets to
generate shellcode
+

e Redirect control
flow

b

Prior Defenses Our Work
~Memory disclosure L ~Memory disclosure
p) >
D €y T | +
 XnR (CCS'14) ey,

| Ony,: @ Scanmemoryat
. HideM (CODASPY’15) M €m runtime for gadgets

' Readactor (Oakland 15) !

___________________________________ +
e Chain gadgets to 9 Chain gadgets to
generate shellcode generate shellcode
o +O8sty,,
® Redirect control HEISENBYTE b"eiC,qs
flow ; (This talk) '

Tolerates discovery of code reuse gadgets, but
prevents them from being used as intended

Extends the benefits of execute-only memory to
closed source COTS binaries, especially on Windows

4/21

Why defend at Step @7

Extends the benefits of execute-only memory to
closed source COTS binaries, especially on Windows

1) Addresses the problem of incomplete separation of data
from code in (Windows) COTS binaries

2) Protects transparently legacy programs that mix data and
code in executable JIT dynamic code

Outline

Destructive Code Reads
System Implementation
Evaluation

Future Work

5/21

Destructive Code Reads

Detecting read operations into executable memory

0x100.
0x104s

0x200 34
0x204z

RAM

FF 24 85

Bytes intended

E?jj;Q as data

D

Vﬁiiib Bytes intended

as code

Destructive Code Reads

Detecting read operations into executable memory

0x100:(|94 C3 00 00 %
0x104:(|00 30 00 00

0x200:|[33 co
0x202:||FF 24 85 Mark this

\C J memory page as
execute-only

5/21

Destructive Code Reads

Detecting read operations into executable memory

Ins_truqtion MMU RAM
Pipeline

0x100:(|94 C3 00 00 iﬁ
0x104:(|00 30 00 00

0x200:|[33 co
0x202:||FF 24 85

5/21

Destructive Code Reads

Detecting read operations into executable memory

Ins_truqtion MMU RAM
Pipeline

EIP: 0x202

y jmp 0x100[eax*4]

Instruction is
fetched into CPU

5/21

Destructive Code Reads

Detecting read operations into executable memory

Virtual Physical
0x100 -> 0x100

Instruction RAM
thehne

0x100:(|94 C3 00 00 %
0x104:(|00 30 00 00

0x200:(|33 CO
0x202:||FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

5/21

Destructive Code Reads

Detecting read operations into executable memory

Virtual Physical
0x100 - 0x100

Instruction RAM
Plpellne

- 0x100:/[94 C3 00 00 %
X Q 0x104:/00 30 00 00

0x200:(/33 co
0x202:||FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

CPU tries to read
from execute-only -
memory

Read into executable memory detected

5/21

Destructive Code Reads

“Destroying” the executable byte that is read

Virtual Physical
0x100 > 0x100

Instruction RAM
Pipeline ’,—

0x100:(|94 C3 00 00 %
0x104:(|00 30 00 00

0x200:(|33 CO
0x202:||FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

5/21

Destructive Code Reads

“Destroying” the executable byte that is read

Virtual Physical
0x100 - 0x100

Instruction RAM
Pipeline ’,'

0x100:(|94 C3 00 Oﬁ%

0x104:(|00 30 00 00

0x200:(/33 co
0x202:||FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

0x1100:194 C3 00 00
0x1104:|100 30 00 00

0x1200:[33 co]
0x1202:|FF 24 85

Duplicate original executable memory page

5/21

Destructive Code Reads

“Destroying” the executable byte that is read

Virtual Physical
0x100 - 0x100

Instruction RAM
Plpellne

0x202:||FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

0x1100:194 C3 00 00
0x1104:|100 30 00 00

0x1200:[33 co]
0x1202:|FF 24 85

Destroy the original executable byte

5/21

Destructive Code Reads

“Destroying” the executable byte that is read

Virtual

Physical
0x100 - 0x1100

Instruction
Pipeline O .

5/21

. RAM

0x100:

0x104:
0x200:
0x202:

0x1100:
0x1104:
0x1200:
0x1202:

EIP: 0x202
Jmp 0x100[eax*4]

Destructive Code Reads

“Destroying” the executable byte that is read

Virtual Physical
0x100 = 0x1100

Instruction RAM
Pipeline ’,—

0x100:||FF C3 00 Oﬁ%

0x104:(|00 30 00 00

0x200:(|33 CO
0x202:||FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

T~0x1100:[94 €300 00
0x1104:|(00 30 00 00

0x1200:[33 co]
0x1202:|FF 24 85

Service the original read operation

5/21

Destructive Code Reads

“Destroying” the executable byte that is read

Virtual Physical
0x100 - 0x100

Instruction RAM
Pipeline o

0x1100:
0x1104:
0x1200:
0x1202:

5/21

0x100:
0x104:
0x200:
0x202:

FF C3 00 00 :\

FF 24 85 EIP: 0x202
00_01 00 00_ jmp 0x100[eax*4]

Restore MMU translation

Destructive Code Reads

Stopping a dynamic code reuse attack

Virtual Physical
0x100 - 0x100

Instruction RAM
Pipeline

0x100:||FF C3 00 00 :\
0x104:(|00 30 00 00

0x200:|[33 co
0x202:||FF 24 85

0x1100:194 C3 00 00
0x1104:|100 30 00 00

0x1200:[33 co]
0x1202:|FF 24 85

Assume memory at 0x1 00 was disclosed as part of an attack

5/21

Destructive Code Reads

Stopping a dynamic code reuse attack

Virtual Physical
0x100 - 0x100

Instruction RAM
Pipeline

0x100:||FF C3 00 00 %
0x104:(|00 30 00 00

0x200:|[33 co
0x202:||FF 24 85

00 01 00 00 o D
{) Executed: inc ebx Shellcode

__________ esired: xchg eax,esp 0x100
0x1100:994 C3)00 00 {ret >

0x1104:|100 30 00 00

0x1200:[33 co]
0x1202:|FF 24 85

Attacker assumes that he found a stack pivot gadget

5/21

5/21

Destructive Code Reads

Stopping a dynamic code reuse attack

Virtual Physical
0x100 - 0x100

Instruction RAM
Pipeline

0x200:||33 CO
0x202:||FF 24

0x100:(FF C3500 00 %
/0x104: 00 30 00 00 |

0x1100:194 C3
0x1104:100 30

0x1200:133 CO
0x1202:|FF 24

85
‘QQ_Ql__O_O__OQ_) Executed: inc ebx Shellcodue
____________ Desired: XChg €ax, esp 0x100
00 00 ret
100 30_00 00 |
85
00 01 00 00

The desired gadget was not executed

Outline

Destructive Code Reads
System Implementation
Evaluation

Future Work

System Implementation

L Offline Static Binary Rewriting J

A 4

[Initialization of Executable Memory J

A 4

[Active Monitoring Mode J

6/21

6/21

System Implementation

[Configure Execute-only Memory }

Static
rewritten |
binaries

Dynamic
JIT code

/

New
process
loaded

New JIT
buffer
created

Initialization Mode

Identify
executable
memory pages

Mark pages as
execute-only
using EPT

Key Requirements for Destructive Code Reads

MMU .
: “When” to mediate?
_-- 0x100:|[94
'3 L 0x104:|| 00 . .
NS SEX Detect read operations into executable
i 0x202:||FF memory
® ost Machine
| haerspace “How” to mediate?
N Code o
= : . ,
i m\! Data Maintain separate code/data views
1\ codecopy M2 for same (virtual) memory address
|

Hardware-Assisted Nested Paging is a key enabler

7/21

8/21

Hardware-Assisted Nested Paging

Hardware feature to improve virtualization performance:
Translate guest to host addresses in hardware

Different implementations:

Code

A

Intel EPT*

AMD RVI
1
: | Virtual (V) Addr
| >
:: Code
I g
I
[Guest Pa
I Tables
| GUEST v—=P

|
|
|
: Code
|

Host EPT
P—M

HOST

|
Nested Paging Hardware

* EPT: Extended Page Tables
RVI: Rapid Virtualization Indexing

When to Mediate

(1) Efficient detection of reads into executable memory

Problem: OS native paging cannot mark memory as execute-only

— e ———— —— — — — — e ————— —— — — — — —

I I
| Virtual (V) Addr Physical (P) Addr :
|

| R_Xa |
| Code Code |
I > I
I I
| I
I I
I I
I Page |
| Tables :
I

| I

HOST v—P

9/21

9/21

When to Mediate

(1) Efficient detection of reads into executable memory

Problem: OS native paging cannot mark memory as execute-only

Solution: Virtualize the host and use Intel EPT to mark execute-only

——e—— e ——— — ——————— ————

! Guest Host
| : Virtual (V) Addr Physical (P) Addr Machine (M) Addr
I o - ~
: | Code Code | Code
| | > } >
| |
|
| |
|| ;
|| |
| | Guest Pa Host EPT
! Tables P M
| GUEST v_-P ' HOST
I L

Reads into
this page will
trap into
hypervisor

How to Mediate

(2) Efficient maintenance of separate code/data views

Goal: Induce different program behavior at the same virtual address
depending on read or execute operation

Solution: Manipulate EPT to redirect memory translation at runtime

! Guest Guest | Host :
| : Virtual (V) Addr Physical (P) Addr Machine (M) Addr |
i o - - .
: | Code Code N1 Code |
¥ g =X |
I : m “Copy” Data (M2,
| ~a
| I [|
:' | Change
| | Guest Pa Host EP1 ! g'
| : Tables P—>M1 = translation
V—>P - - M2 .
L |

10/21

Architecture (Para-virtualized)

Offline Live Target System
Rewritten »| Loaded Guest
binary application User
_/ ___________________________________

Relocated 11 Guest bage)
data tables j-» Guest mode Guest
reloc , component A Kerne

Host mode y ?
EPT <+ component & Host

Hei t
eisenbyte)

11/21

Configure execute-only mem
% When and how to mediate

Destroy code when read

Architecture (Para-virtualized)

Offline Live Target System
Rewritten »| Loaded Guest
binary application User dentif bl mem
. . = entify executable me
Relocated o ~ \/
data Guest page @g/@‘@ induce COW
] tables Guest mode K |
.reloc = component A erne
Host mode y
EPT <+ component Host
Hei t
L eisenbyte)

11/21

12/21

Tracking Runtime Executable Memory

How to identify executable memory we want to protect?

(1) Static program binaries
* Windows OS-provided runtime callbacks for
* New/exiting processes
* Loaded libraries

(2) Dynamic JIT code
* Inline hooking of Windows memory management APIs
* Perform hypercalls to hypervisor when
* Exec buffer 2 Non-exec
* Non-exec buffer > Exec
* Exec buffer 2 Freed

[More in paper ...] Optimizations and Windows-specific implementation details

Tracking Runtime Executable Memory

Challenges

Challenge 1: Shared physical memory pages across processes

Solution: Induce Copy-On-Write (COW) on pages with
1-byte identity write operation to each page

Challenge 2: Demand paging — pages could be paged out

Solution: Make pages resident in physical memory using
MmProbeAndLockPages () kernel API

13/21

14/21

Some Caveats to HEISENBYTE

Cannot handle code that reads/writes to itself
* Eg. Self-modifying code

Cannot mitigate attacks that reveal contents of

memory without directly reading executable memory
* Eg. Fault-based side-channel attacks (Blind-ROP)

Need support for fine-grained ASLR

* Eg. Instruction-level in-place code randomization

One-byte code “destruction” regardless of operand size
of read operation

Outline

Destructive Code Reads
System Implementation
Evaluation

Future Work

Evaluation — Execution Overhead

~
o

o2}
o
T

SPEC2006 Runtime Overhead (%)

I Virtualization
[Destructive Code Reads |

L 50}
©
(1)
2 40t — —
o
o)
- 30f
£
3 20t
1o D
O N X\ N
§ & & &S
O & 9 o & > © S o ®
N » M2 S AN > N N A> S
<& S W AN e o
D) w0

“Destructive code reads” overhead depends on how imperfect the
separation of data from code in executable sections

15/21

Evaluation — Execution Overhead

Runtime Overhead (%)

70 ‘ ‘ ‘
I Virtualization
60 [] 1 Destructive Code Reads |
L 50}
©
©
2 40t — —
(0]
3
2 30
£
é 20}
10 D
S < : c ¢
QQ}\ bg\ by N2 DP?)Q b?JQ) b?)‘b (‘ob‘\'(g/ \96\ b/&\‘b +(§Z§\
Q- DN A A
S > ¥

Virtualization avg overhead: ~1.8%
Destructive code reads avg overhead: ~16.5%

16/21

17/21

Evaluation — Memory Overhead

Peak Resident Set Size (RSS) Memory Overhead (%)

—_
o

o

(o))

Peak RSS Memory Overhead (%)

Peak RSS memory avg overhead: ~0.8%

18/21

Evaluation - Security

HEISENBYTE corrupts code with debug trap code 0xcc

Crafted dynamic code reuse exploits and monitor for
invoked debug trap

(1) Dynamic code
e Self-injected bug in toy program that mimics the creation
of a JIT code buffer

(2) Static code
* CVE-2013-2551: Internet Explorer Bug

Exploits on both static programs and dynamic JIT code
triggered debug traps

Evaluation — Demo on Win8 / IE10

Ll

Suspicious activity detected!

PROGRAM: iexplore.exe (pid = 1200)
! Attempting to execute code that was previously read.
Dumping code dump now for analysis.

OK

19/21

Outline

Destructive Code Reads
System Implementation
Evaluation

Future Work

Future Work

* Improve code/data separation task in disassembly for
Windows COTS binaries

* Record read operations into executable memory to guide
disassembly and binary rewriting

e Lower overhead of destructive code reads
 Use new virtualization-based hardware features in Haswell+
processors (Eg. New #VE exception)

* Explore value of destructive data reads

20/21

Conclusions

Key Idea: Make exec. mem. indeterminate after it has been read

* New security concept: “Destructive code reads”
* One application: Mitigate memory disclosure attacks
* Heisenbyte is a practical solution
* Works with imperfect disassembly on COTS binaries

e No instrumentation on the binaries
 JIT code works too

Thank youl!

Adrian Tang ¢ @O0x0Oatang
21/21

