
CLKscrew: Exposing the Perils of Security-Oblivious Energy Management [1]

Adrian Tang Simha Sethumadhavan Salvatore Stolfo
Columbia University

CSAW ’17 · Applied Research Competition · November 10, 2017

Why scrutinize Energy Management?

DVFS Hardware/Software Support Confidentiality Attack: AES Key Inference

Today’s systems cannot exist without energy management.

Energy Management
Today’s systems cannot exist without

Complicated

Pervasive

Essential

Energy Management
Today’s systems cannot exist without

Complicated

Pervasive

Essential

Energy Management
Today’s systems cannot exist without

Complicated

Pervasive

Essential

Pervasive Crucial Complex

+ +

A perfect storm for security

The CLKscrew Attack

Not a hardware or software bug.
Root cause: Multiple security-oblivious design issues

Exploit software interfaces of energy
management designs to induce faults

Energy Management
Today’s systems cannot exist without

Complicated

Pervasive

Essential

Energy Management
Exploiting software interfaces to

Software-based
attacker

Stretch
operational limits

fr
eq

ue
nc

y

voltage

Induce faults

decryption

key

Energy Management
Exploiting software interfaces to

Software-based
attacker

Stretch
operational limits

fr
eq

ue
nc

y

voltage

Induce faults

decryption

key

Software-based
attacker

Stretch operational
limits

Induce security-
critical faults

Contributions to Research & Industry

- New attack vector that exploits energy management
-

- Practical attack on trusted computed on ARM devices
-

- Impact hundred of millions of deployed devices
- Call-to-action for existing and future energy
 management designs to be security-aware

Dynamic Voltage and Frequency Scaling (DVFS)
Operating frequency and voltage can be configured via

memory-mapped registers from software.Dynamic Voltage and Frequency Scaling (DVFS)

Energy consumption

Frequency

Voltage

DVFS

Hardware & Software Support for DVFS

Software

Hardware

DVFS

Frequency
Regulator

Voltage
Regulator

Power Governor

Vendor Device Driver

Memory-Mapped Registers

Design issues that enable attack vector

No safeguard limits in the hardware regulators

	 2

the test device up to about 2.7GHz before we see signs of
device instability. This is possible even when the vendor
recommends a maximum of 2.4GHz at that voltage. For
more characterization, please refer to Figure 2.

2. Reducing the operating voltage lowers the minimum re-
quired frequency needed to induce faults. This implies
that it is not necessary to overclock the design excessive-
ly. Combination of frequency and voltage values, while
individually valid, may still cause unstable conditions
when used together. Practically this means that stretching
the operational limits won’t trigger thermal trip points.

3. To reliably inject software faults, we need to do so with-
out affecting non-targeted code. Fortunately, the cores in
the test SoC are running in separate frequency domain.
The deployment of cores in different frequency domains
allows us to isolate the effects of cross-core fault attack.

4. Hardware regulators operate across security boundaries
with no physical isolation.

5. Execution timing of code running in Trustzone can be
profiled with hardware counters that are accessible out-
side Trustzone.

6. Memory accesses from the non-secure world can evict
cache lines used by Trustzone code, thereby enabling
Prime+Probe-style execution profiling of Trustzone
code.

 Many of the design decisions that contribute to the success of
the attack are supported by practical engineering concerns, i.e.
the need to be efficient and portable, and in some cases the need
to profile code. In other words, the root cause is not a specific
hardware or software bug but rather a series of well-thought-
out, but security-oblivious, design decisions. For example, the
tested Snapdragon SoC is designed to have separate frequency
domains for the cores for better energy management. To ac-
commodate workloads of different runtime computing demands,
the separate frequency domains offer the system very fine-
grained control over the operating frequencies across the cores.

 Another example is the fact that no safeguard limits are en-
forced in hardware, because of the need to use the same voltage
regulators across many different designs. Presumably, this is
also because of the difficulty of enforcing the guards in hard-
ware due to manufacturing variations.

 To show the extent of impact of these design decisions, we
devise two attacks that break the confidentiality and integrity
guarantees of ARM Trustzone. Using publicly available infor-
mation on the target SoCs and no more than the software con-
trol of energy management hardware regulators, we implement
two attacks in two scenarios: (1) infer secret cryptographic keys
stored in Trustzone, and (2) subvert the RSA signature verifica-
tion in Trustzone to side-load self-signed code into Trustzone.

 The paper delineates all the challenges we face as an attacker,
but more importantly, it demonstrates how these challenges can
be overcome to realistically exploit the design issues. In particu-
lar, we show that attackers can use the design issues to realisti-
cally overcome the two primary challenges to pulling off the
attacks: (1) how to isolate the effects of the faults to the victim
code, and (2) how to precisely time and deliver the fault to the
intended code of execution.

 In the first confidentiality attack scenario, we assume that
there is a Trustzone app that provisions AES keys and stores
these keys within Trustzone, inaccessible from the non-
Trustzone (non-secure) environment. Using the software faults,
an attacker can cause the app to output erroneous decryption
and use the discrepancies to infer the secret key. The conse-
quence to such an attack is that sensitive information like secret
keys can be stolen from the secure storage in the TEEs.

 Once we have found the specific timing parameters to conduct
the attack, it took on average 20 faulting attempts to induce a
one-byte fault to the input to the eighth AES round. Given the
pair of this faulty plaintext and the expected one, it then took
Tunstall et al.’s DFA2 algorithm about 12 minutes on a 2.7GHz
quad- core CPU to generate 3650 key hypotheses, one out of
which is the secret AES key stored within Trustzone.

 In the second integrity attack scenario, we show how the same
type of software faults can subvert at runtime the RSA signature
verification – the primary public-key cryptographic method
used for authenticating the loading of firmware images into
Trustzone. An attacker can invoke the TEE to load a self-signed
attacker app. In normal operation, the TEE should reject the
loading of the app as the app does not have a valid signature.
However, with the software faults, the attacker can corrupt the
signature at runtime and trick the verification code to accept the
attacker app as being signed by an authorized vendor. With this
attack, it means that arbitrary code can be loaded within
Trustzone, thus breaking the guarantee that all code running
within Trustzone must be trusted.

 About 20% of faulting attempts (1153 out of 6000) result in a
successful fault within the targeted signature buffer. Out of this
set of corrupted signature modulus, about 4.72% can be broken
and exploited to craft our self-signed app. On average, we ob-
serve one instance of the desired fault in 65 attempts.

 The attack timing parameters uncovered in our paper demon-
strate that the attacks are practical, and thus pose realizable risks
to existing system designs.

																																																								
2 Tunstall, M. et.al. Differential Fault Analysis of the Advanced Encryption
Standard using a Single Fault. In IFIP International Workshop on Information
Security Theory and Practices (2011).

Figure 2: Vendor-recommended voltage and frequency Operating
Performance Points (OPPs) vs. maximum OPPs achieved before com-
putation fails. These OPPs are collected from the Nexus 6 device.

1

Nexus 6

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Voltage (V)

0.5

1.0

1.5

2.0

2.5

F
re

q
u

e
n

cy
 (

G
H

z)

Nexus 6P (A57 cluster core)

Maximum OPP

Vendor stock OPP

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

q
u

e
n

cy
 (

G
H

z)

Pixel ("Performance" cluster core)

Maximum OPP

Vendor stock OPP

Frequency / Voltage Operating Point Pairs (OPPs)

Fr
eq

ue
nc

y
(G

H
z)

Fr
eq

ue
nc

y
(G

H
z)

Voltage (V) Voltage (V)

Device ‘A’ Device ‘B’

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Voltage (V)

0.5

1.0

1.5

2.0

2.5

F
re

q
u

e
n

cy
 (

G
H

z)

Nexus 6P (A57 cluster core)

Maximum OPP

Vendor stock OPP

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

q
u

e
n

cy
 (

G
H

z)

Pixel ("Performance" cluster core)

Maximum OPP

Vendor stock OPP

Frequency / Voltage Operating Point Pairs (OPPs)

Fr
eq

ue
nc

y
(G

H
z)

Fr
eq

ue
nc

y
(G

H
z)

Voltage (V) Voltage (V)

Device ‘A’ Device ‘B’

Regulators operate across security boundaries2

CPU Core

Trustzone
Trusted code

Normal
Untrusted code

Frequency & Voltage Regulators

Frequency and voltage changes

Is DVFS Trustzone-Aware?

CPU Core

Trustzone
Trusted code

Normal
Untrusted code

Hardware-enforced isolation

Frequency & Voltage Regulators

Regulator HW-SW interface

Frequency and voltage changes

No!

Separate per-core frequency domains
 Isolate effects of cross-core fault attacks

3

Trustzone code execution can be profiled with
hardware cycle counter from outside Trustzone

4

Integrity Attack: Bypass RSA Signature Check

[1] CLKscrew: Exposing the Perils of Security-Oblivious Energy Management. A. Tang, S. Sethumadhavan and S. Stolfo. USENIX Security 2017.

Attack: Infer secret AES key stored in Trustzone

Attack: Load self-signed apps into Trustzone

Subverting Trustzone Isolation with CLKSCREW

Trustzone Normal

secret
key ciphertext

plaintext

Confidentiality Attack
infer secret AES key stored
within Trustzone

AES
decryption

I.
Trustzone Normal

RSA
decryption

plaintext
hash

#
SHA-256

hash
verify &

load app

== signed app

Integrity Attack
load self-signed app into
TrustzoneII.

app binary

digital
signature

public key

(More details in the paper…)

Key idea: Inject fault at runtime during RSA decryption
Corrupt original RSA modulus into factorizable attacker modulus
Craft and load self-signed binary using corrupted RSA modulus

Trustzone Normal

secret
key ciphertextAES

decryption

Faulty

Differential
Fault Analysis [1]

Key Inference Attack: Summary

faulty
plaintext

 Idea: Induce a fault during the AES decryption
Infer key from a pair of correct and faulty plaintext

Trustzone Normal

secret
key ciphertext

correct
plaintext

AES
decryption

Correct

CLKSCREW

[1] Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

secret
key

Trustzone Normal

secret
key ciphertextAES

decryption

Faulty

Differential
Fault Analysis [1]

Key Inference Attack: Summary

faulty
plaintext

 Idea: Induce a fault during the AES decryption
Infer key from a pair of correct and faulty plaintext

Trustzone Normal

secret
key ciphertext

correct
plaintext

AES
decryption

Correct

CLKSCREW

[1] Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

secret
key

Trustzone

Normal

secret key

ciphertext

AESdecryption

Faulty

Differential

Fault Analysis [1]

Key Inference Attack: Summary

faultyplaintext

 Idea: Induce a fault during the AES decryption

Infer key from a pair of correct and faulty plaintext

Trustzone

Normal

secret key

ciphertext correctplaintext

AESdecryption

Correct

CLKSCREW

[1] Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

secret key

Key idea: Induce a fault at runtime during AES decryption
Infer key from a pair of correct and faulty AES output

CLKscre
w

Results:
 - ~20 faulting attempts to induce one-byte corruption in 7th AES round
 - ~12min on a 2.7GHz quad-core to generate 3650 key hypotheses

Key Inference Attack: CLKSCREW Parameters

Differential Fault Analysis needs CLKSCREW to deliver a
one-byte fault to the 7th AES round

Base voltage:

Low frequency:

High frequency:

Fault injection duration:

1.055V

3.69GHz

2.61GHz

680 no-op loops (~39 μsec)Attack parameters:

