Heisenbyte: Thwarting Memory Disclosure Attacks
using Destructive Code Reads

Adrian Tang

- Dynamic code reuse attacks assemble exploit
payload at runtime using memory disclosure attacks.
- EXisting works require source code, or do not

Motivation

Simha Sethumadhavan

CoSd

CU

Salvatore Stolfo

support JIT code.

- Disassembly of binaries is incomplete.

Rethinking the use of execute-only memory
to closed-source COTS binaries

Taxonomy of Approaches

Dynamic
Code Reuse Attack

N

~

>Memory disclosure
+
€@ Scan memory at
runtime for gadgets
+
9 Chain gadgets to
generate shellcode
+

9 Redirect control
flow

>

Prior Defenses

"""""""""" (3re)

| XnR (CCS'14)

' HideM (CODASPY'15) * Ve,

te*o,, !

' Readactor (Oakland’15)

L -—----

9 Chain gadgets to
generate shellcode

+

e Redirect control

flow

Our Work

PRaY

>Memory disclosure
+
€@ Scan memory at
runtime for gadgets
+

9 Chain gadgets to
generate shellcode

>

HEISENBYTE
(This talk)

Key Insights

Werner Heisenberg, in 1933
(German theoretical physicist)

Image credits: Wikipedia

Observer Effect:

“The act of observing a system inevitably changes
the state of the system.”

HEISENBYTE’s destructive code reads:

“Reading executable memory changes the
executable state of the read memory.”

Executing memory after reading it yields
unpredictable behavior

Mechanism

Architecture

Offline Analysis

Live Target System

Guest
User

Guest

1| Guest page
Guest mode]I tables
component | Kernel

Original .
prolglram Re_ertten > Logde_d
binary binary application
Relocated e
data i_ ——————
.reloc |
I Hostr mTaoTe_‘I r
Static | component " >
IDA] -———
P ST Heisenbyte
ro rewriter y Y,

Destructive Code Reads

Instruction

Pipeline 0.

EIP: 0x202

» - 0x100:
,’Q 0x104:

‘\ 0x200:
o 0x202:

MMU

Jmp 0x100[eax*4]

Memory marked as

execute-only

PhysMem

00 30 00 00

94 €37 00700 }

94 C3 00 00
00 30 00 00

FF 24 85

.
O
/

"

\
\
\
S

< _» 0x100:
0x104:
0x200:
0x202:

MMU

FF 24 85

|

N
S~ 0x1100:[94 C3 00 00
0x1104:{00 30 00 00

0x1200:|33 CO
0x1202:|FF 24 85

EIP: 0x100

Executed: inc ebx

ret
Shellcode
0x100

Desired: xchg eax, esp

MMU

0x100 (
/ 0x104
CPU

00 30 00 00
[33co "7

FF 24 85

100 01_00_00_

0x200

0x202:

0x1100:
0x1104:
0x1200:
0x1202:

94 C3 00 00
00 30 00 00

FF 24 85

(a) Memory read of execute-only memory detected

(b) Destructively read executable memory

(c) Shellcode uses executable memory read earlier

Hardware Virtualization Support

Virtual Addr Space

(Target Process)

Guest Physical
Addr Space

Code _

_--~-" Data

-
-
-

Code _--"~
_---" Data

Data

Data

Host Machine
Addr Space

Code _--"~
_---" Data

Data

Virtual Addr Space

(Target Process)

Guest Physical
Addr Space

Code

-

_---" Data

-
-

Code _--"~
_---" Data

Host Machine
Addr Space

Code _--~
_---" Data

Data

Data

Virtual Addr Space

Guest Physical

Data

(Target Process)

Code _--~
_---" Data

Data

Addr Space

Code _--~
_---" Data

Data

Code __---~
copy~ Data

Host Machine
Addr Space

Code _--~
_---" Data

Data

Code __---~

-

coprpy~ Data

(c) data reads into the executable memory

Results
Execution Overhead

I Virtualization
[Destructive Code Reads |

(0]
o
T

[6)]
o
T

N
o
T

W
o
T

Runtime Overhead (%)

Virtualization avg overhead: ~1.8%
Destructive code reads avg overhead: ~16.5%

Memory Overhead

10
X
3
S 8|
<
D
>
O 6}
>
£
o 4t
=
7
i H
w
& 0 — — = J— ,_l |_| 1 ,_l
D U & 3 & SY S R & Sl
s o8 of F & & & &
N N WO N2 S & > @ & 7S
g oW PP SR © > 23
Q;Q b2 ™ &b 4§' 4+
5 o
> R

Peak RSS memory avg overhead: ~0.8%

Detection Results

HEISENBYTE corrupts code with debug trap code 0xcc

Crafted dynamic code reuse exploits and monitor for
invoked debug trap

(1) Dynamic code
* Self-injected bug in toy program that mimics the creation
of a JIT code buffer

(2) Static code
* CVE-2013-2551: Internet Explorer Bug

Exploits on both static programs and dynamic JIT code
triggered debug traps

Columbia University Data Science Day (Poster Session)

April 6, 2016

