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using Destructive Code Reads
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- Dynamic code reuse attacks assemble exploit
payload at runtime using memory disclosure attacks.
- EXisting works require source code, or do not
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support JIT code.

- Disassembly of binaries is incomplete.

Rethinking the use of execute-only memory
to closed-source COTS binaries
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Key Insights

Werner Heisenberg, in 1933
(German theoretical physicist)

Image credits: Wikipedia

Observer Effect:

“The act of observing a system inevitably changes
the state of the system.”

HEISENBYTE’s destructive code reads:

“Reading executable memory changes the
executable state of the read memory.”

Executing memory after reading it yields
unpredictable behavior
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Destructive Code Reads
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(a) Memory read of execute-only memory detected

(b) Destructively read executable memory

(c) Shellcode uses executable memory read earlier

Hardware Virtualization Support
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(c) data reads into the executable memory

Results
Execution Overhead
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Runtime Overhead (%)

Virtualization avg overhead: ~1.8%
Destructive code reads avg overhead: ~16.5%

Memory Overhead
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Peak RSS memory avg overhead: ~0.8%

Detection Results

HEISENBYTE corrupts code with debug trap code 0xcc

Crafted dynamic code reuse exploits and monitor for
invoked debug trap

(1) Dynamic code
* Self-injected bug in toy program that mimics the creation
of a JIT code buffer

(2) Static code
* CVE-2013-2551: Internet Explorer Bug

Exploits on both static programs and dynamic JIT code
triggered debug traps
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