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Anti-virus (AV) software is fundamentally broken. AV
systems today rely on correct functioning of not only the
AV software but also the underlying OS and VMM. Thus
proper functioning of software AV requires millions of
lines of complex code – which houses thousands of bugs
– to work correctly. Needless to say, and as evidenced in
numerous software AV attacks, effective software AV sys-
tems have been difficult to build. At the same time, mal-
ware incidents are increasing and there is strong demand
for good anti-virus solutions; the software anti-virus mar-
ket is estimated at close to 8B dollars annually.

In this work we present a new class of robust AV sys-
tems called Silicon anti-virus systems. Unlike software
AV systems, these systems are lean and mostly imple-
mented in hardware to avoid reliance on complex soft-
ware, but, like software AV systems, are updatable in the
field when new malware is encountered. We describe the
first generation of silicon AV that uses simple machine
learning techniques with existing performance counter in-
frastructure. Our published and unpublished work shows
that common malware such as viruses and adware, and
even zero day exploits can be detected accurately [1, 2].
These systems form a very effective first-line, energy-
efficient defense against malware.

1 Malware Detection Techniques
The idea behind the hardware malware detector is sim-
ple. Our research has shown that programs, be they mali-
cious or benign, exhibit regular, reproducible behavior at
the microarchitectural level. While these execution signa-
tures vary to some degree in identical or very similar pro-
grams, they tend to differ radically across different types
of programs. Based on this observation, we have empiri-
cally demonstrated the feasibility of detecting both known
malware and zero-day (unseen) malware.

Known Malware with Supervised Learning Nearly
98% of malware infections are from known malware. We
collected performance counter measurements from nearly
700 Android applications, both Android malware and typ-
ical Android goodware, and train models that describe
what constitutes malicious and benign behavior using a
series of supervised machine learning techniques (such as
Decision Trees, Artificial Neural Networks). Using mea-
surements collected from the execution of another differ-
ent testing set of malware and goodware for the evaluation
of the trained models, we observed that we correctly de-
tect up to 90% of malicious malware packages with a less
than 5% false positive rate, as presented in Figure 1 (Left).

Figure 1: Accuracy of (Left): Signature-based classifiers in de-
termining if families of malware and normal Android program
packages are malware and (Right): Anomaly-based classifiers
in determining if a given time-epoch sample for IE is malicious
or benign, for 1 event set.

Detecting Novel Malware with Unsupervised Learning
Our malware detector can also catch zero-day or unseen
malware. We make the key observation that during the ex-
ploitation stage, in the act of infecting a system, malware
alters the original execution flow of the vulnerable pro-
gram to execute peculiar non-native code (termed shell-
code). Through empirical experiments, we find that these
malicious code execution cause observable perturbations
to the original dynamic microarchitectural characteristics
of the benign programs. With careful extraction of the
features combined with unsupervised machine learning
(Power Transform followed by One-Class Support Vec-
tor Machines with RBF), we can build baseline models of
benign program execution and use these profiles to detect
deviations that occur as a result of malware exploitation.
Specifically, we characterize the normal behavior of Inter-
net Explorer (IE) 8 and Adobe Reader 9 on a WinTel plat-
form and evaluate the trained baseline models with mal-
ware exploits. Since the HPC can only monitor up to four
events simultaneously, we experiment with using different
combinations of events. For one event set, we are identi-
fied up to 100% of the time-epoch samples attributed to
malware exploit execution with 1.1% false positives, as
presented in Figure 1 (Right).

2 Design
Figure 2 describes our malware detection system. This
system offers very low data collection overheads, fast
hardware classification and excellent isolation from at-
tackers. We describe each of these features in more detail.

Data Collection Existing processors contain perfor-
mance monitoring counters (PMCs) which monitor pro-
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Figure 2: Our hardware antivirus is composed of modified per-
formance counters called security monitoring units (SMUs) in
each core plus an IP block which analyzes SMU data and reacts
to malware detection events.

gram execution. Our hardware antivirus uses a similar
monitoring structure – called the security monitoring unit
(SMU) – but does not allow software to view, modify, or
control the SMUs. Instead, the SMUs are controlled by
the silicon anti-virus and collected data is transmitted only
to the AV via a dedicated interconnect. Thus versus soft-
ware the SMUs both eliminate data collection overhead
and ensure that attackers cannot avoid being monitored.

Data Analysis The SMUs sample performance data at
relatively high frequency (once every 25,000 cycles or
less) which must be classified with a high throughput so as
keep up. As such, one major functionality of the AV hard-
ware is to serve as a machine learning (ML) accelerator.
Our best performing classifier for AV thus far is a simple
decision tree algorithm. While easy to compute, the deci-
sion trees must be stored in virtually isolated memory and
their traversal can be memory latency bound. To maintain
high throughput and reduce memory bandwidth require-
ments, the ML accelerator must store the upper portions
of the decision tree in a scratchpad and batch requests for
lower portions of the tree to amortize these accesses over
many samples. While this strategy increases the latency
in classifying each sample, many must be classified before
an entire thread or process can be classified, so throughput
is critical and only some fairness necessary.

FPGA Prototype We are using Xilinx’s Zynq SoC to
prototype our hardware AV. The Zynq contains two ARM
Cortex A9 cores, a set of standard peripherals, and an
FPGA fabric. To emulate SMUs, we are using the ARM
cores’ existing performance monitoring counters and their
data samples are being transmitted over a shared intercon-

nect to our hardware AV unit on the FPGA fabric. As a re-
sult, our prototype will have similar characteristics to pro-
duction design in terms of functionality and performance
impact. Once the prototype is hardened into a set of IP for
SoC inclusion, it will have the security benefits of isola-
tion from software.

Secure Updating To deal with emerging threats, like
software AV, our hardware engine can be updated with
new malware signatures as they become available. To cre-
ate signatures, AV vendors will analyze new malware us-
ing performance counters and characterize their microar-
chitectural behaviors into signatures. Each update will
contain these signatures, a configuration file that deter-
mines which performance features are to used with what
classifiers, and possibly one or more classifiers (as new
classification techniques are discovered). This data will be
cryptographically signed and delivered to the signature-
based detection component securely similar to how mi-
crocode update patches are delivered and applied today.
Conversely, the zero-day detection component in our sys-
tem does not need malware signature updates. It continu-
ously trains its models and self-updates using the perfor-
mance data from the SMUs.

3 Conclusions
Our silicon AV system is useful in a variety of applica-
tions which we plan to target. Mobile SoC vendors can
include our IP and offer robust, low power AV as a value-
added feature. Anti-virus vendors could also find our data
collection and ML accelerators useful in their analyses of
malware. Finally, our AV is also useful in the cloud set-
tings; our AV should be able to detect malware running
within customers’ virtual machines, allowing providers to
isolate the VMs from other customers.

Traditionally, the problem of dealing with malware has
been relegated to the software community. Despite many
advances in this area, the limitations of pure software ap-
proach in practical settings remain significant. It is our
strong belief that moving AV (and other security capabil-
ities, for that matter) into hardware is essential to signif-
icantly raise the bar against malicious entities. Our real-
ization of this hardware AV implementation is an advance
towards our vision to take the fight against malware to a
new arena, one with fewer limitations and better security
guarantees.
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