
Blacklist Core: Machine-Learning Based Dynamic Operating-Performance-Point Blacklisting for 
Mitigating Power-Management Security Attacks  

 

Sheng Zhang, Adrian Tang, Zhewei Jiang, Simha Sethumadhavan, Mingoo Seok 

 Columbia University 
 

ABSTRACT 
Most modern computing devices make available fine-grained control 

of operating frequency and voltage for power management. These 

interfaces, as demonstrated by recent attacks, open up a new class of 

software fault injection attacks that compromise security on 

commodity devices. CLKSCREW, a recently-published attack that 

stretches the frequency of devices beyond their operational limits to 

induce faults, is one such attack. Statically and permanently limiting 

frequency and voltage modulation space, i.e., guard-banding, could 

mitigate such attacks but it incurs large performance degradation and 

long testing time. Instead, in this paper, we propose a run-time 

technique which dynamically blacklists unsafe operating performance 

points using a neural-net model. The model is first trained offline in 

the design time and then subsequently adjusted at run-time by 

inspecting a selected set of features such as power management control 

registers, timing-error signals, and core temperature. We designed the 

algorithm and hardware, titled a BlackList (BL) core, which is capable 

of detecting and mitigating such power management-based security 

attack at high accuracy. The BL core incurs a reasonably small amount 

of overhead in power, delay, and area.  
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1. INTRODUCTION 
Power management in modern commodity devices has become ever 
more important, especially in mobile and embedded devices, due to 
considerations like battery life and portability. The most widely adopted 
energy management solution is dynamic voltage and frequency scaling 
(DVFS) in which supply voltage (VDD) and clock frequency (FCLK) of 
a processor core are modulated based on computational demand. DVFS 
has fine cooperative granularities between software drivers and 
hardware voltage and frequency regulators.  

The design of DVFS systems requires a cross-stack effort, but the 
security concern has been often overlooked. A new class of exploitation 
vector termed CLKSCREW is uncovered recently exploiting the 
security-oblivious power management design [1]. Under most widely 
deployed DVFS devices, processors can be pushed beyond a normal 
operation limit to produce faulty computation via software access to 
power management. These faults can be induced from lower privileged 
software across security boundaries to manipulate sensitive 
computations. Attacks like CLKSCREW pose a much more serious 
security threat than the traditional physical hardware-based fault-
injection attacks as they can be conducted using no more than a 
malicious software kernel driver. CLKSCREW has been demonstrated 
to extract a secret AES (Advanced Encryption Standard) key embedded 
within ARM Trustzone [2] and load a self-signed code into Trustzone, 
through low privilege software.  

It is theoretically possible to mitigate those attacks by permanently 
and statically limiting the frequency and voltage modulation range in 

the DVFS system, i.e., guard-banding. But such static measures can 
incur large performance degradation due to the variability of modern 
digital processors. Chip-wise post-fabrication testing may enable us to 
set a custom limit for each chip, alleviating the performance 
degradation as compared to the use of a single limit for all chips, but it 
increases testing time and quickly becomes economically infeasible.  

In this paper, to avoid those limitations of static methods, we 
propose a dynamic countermeasure that can blacklist fault-inducing 
operating performance points (OPP) during run-time. The main idea is 
to detect and mitigate the power management based attack like 
CLKSCREW using an embedded machine learning core. The core is 
initially trained in the design time based on the informative features of 
CLKSCREW, such as voltage and frequency regulation characteristics 
and temperature. Then, during runtime, the core inspects those along 
with timing error flags to further update/adjust the blacklist model. 
Once the core discovers attacks, it can ignore frequency and voltage 
regulation commands that trigger the attack discovery. It can also notify 
the operating system (OS) to profile the source processes of the attacks.  

Fig. 1 shows a quad-core processor architecture based on the 
Qualcomm Snapdragon 805 system-on-chip (SoC) in the Nexus 6 
smartphone, which we used in the experiments throughout this paper. 
The original SoC has four per-core phase-locked-loops (PLL) for clock 
frequency modulation, one unified low-dropout regulator (LDO) for 
voltage regulation, and a dynamic thermal management (DTM) 
subsystem for managing temperature-related events. As shown in Fig. 
1, we have added the countermeasure hardware comprising (i) a 
machine-learning core capable of identifying CLKSCREW attack, 
titled a blacklist core (BL core) and (ii) timing error detection/prediction 
hardware such as tunable replica circuits (TRC) [14-16] and in-situ 
error detection and correction circuits (EDAC) [3,11-13] for acquiring 
timing-error flags. The state-of-the-art EDAC techniques incur small 
silicon area overhead of <5% of a core area. They can also support 
various microarchitectures and circuits [3,11-13]. TRC can incur less 
silicon area overhead and design complexity than EDAC at the cost of 
more guardband to be added.   
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Fig. 1. Processor architecture with the proposed countermeasure  

 

The primary measure for the proposed detection and mitigation of 
CLKSCREW is the BL core. The core performs feature extraction from 
various microarchitecture and circuit parameters. It then performs 
multilayer perceptron (MLP) based feature dimensionality reduction 
with which the core categorizes the OPP curve as a compressed feature, 
i.e., project an ensemble of features into a low-dimensional space, using 
weights trained in design time. During runtime, the core dynamically 
adjusts the decision boundary between safe and unsafe operating 
conditions in the low-dimensional feature space by the timing error 
detection and prediction. This makes the detection and mitigation to be 
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customized to each specific core and its operating environment during 
the runtime.  

We designed the aforementioned machine-learning algorithm in 
the fixed-point arithmetic. We then designed the microarchitecture to 
execute the algorithm with minimal area, delay, and power. Our 
proposed countermeasure demonstrates 99.69% accuracy in mitigating 
CLKSCREW, where undiscovered attacks are corrected by timing error 
prediction/detection circuits and feedback to the decision boundary to 
further improve the mitigation success rate. The BL core takes 1.11 µs 
to identify a potential attack, which can be masked within the latency 
of PLL lock time. It takes the silicon footprint of 0.09 mm2 in a 65 nm 
CMOS process and consumes the power of 10.5 mW at VDD=1V.   

The remainder of the paper is organized as follows. In Sec. 2, we 
will discuss the operating mechanism of the CLKSCREW attack. In Sec. 
3, we will discuss the limitations of static protection. In Sec. 4, we will 
detail the mitigation strategy for the proposed dynamic blacklisting. In 
Sec. 5, we will describe the microarchitecture of the proposed BL core 
along with the experimental results. The paper will conclude in Sec. 6.   

 

2. CLKSCREW ATTACK 
2.1. Background  
DVFS regulates VDD and FCLK according to runtime task demands. To 
track task demands and adjust OPP at acceptable latency and 
granularity, DVFS requires OS-level power management services and 
vendor-specific regulator drivers as well as the hardware regulators. For 
instance, in our experiment in this paper, we used the Krait cores in 
Qualcomm’s SnapDragon 805 SoC on a Nexus 6 device, where 
frequency and voltage regulators are software exposed to Krait cores.  

The voltage regulator is integrated in a separate power management 
integrated circuit (PMIC) chip, which is not exposed to software 
interfaces directly. As shown in Fig. 1, the core voltage is indirectly 
managed by the subsystem power manager (SPM), a hardware block in 
the Qualcomm SnapDragon 805 SoC that maintains a set of control 
registers that interface with the PMIC chip. SPM is accessible to 
privileged software like a kernel driver through these memory-mapped 
control registers. Likewise, frequency regulators also expose the 
multiplier and selector control of the PLLs in these registers to software.  

Software support for DVFS comprises vendor-specific regulator 
drivers and OS-level power management services. The drivers provide 
a convenient means for mechanisms in the upper layers of the stack, 
such as the Linux CPUfreq power governor [4] to dynamically direct 
the voltage and frequency scaling. DVFS requires real-time feedback 
on the system workload profile to guide the optimization of 
performance with respect to power dissipation. This feedback may rely 
on layer-specific information that may only be efficiently accessible 
from certain system layers. For example, instantaneous system 
utilization levels are readily available to the OS kernel layer. As such, 
the Linux CPUfreq power governor is well-positioned at that layer to 
initiate runtime changes to the operating voltage and frequency based 
on these whole-system measures. 

2.2. Fault Injection Mechanism 
For a successful CLKSCREW attack, several hardware conditions have 
to be met. First, hardware regulators have no safeguard in place to 
prevent unsafe OPP configurations. This is observed in several lines of 
consumer mobile devices [1].  

Second, an unsafe operation needs be contained within a core to 
attack (called victim core hereafter), separate from the code that 
performs the attack. This stipulates that multi-core processors would 
operate in different frequency, and attack and victim code can be pinned 
to different cores from software. This core pinning strategy is possible 
due to the deployment of increasingly heterogeneous processors like the 
ARM big.LITTLE [5], and emerging technologies such as Intel PCPS 
[6] and Qualcomm aSMP [7]. With core pinning, the attack code can 
manipulate the frequency of the victim core without self-faulting. In 
addition, interrupts need to be disabled during the duration of victim 
code execution to ensure that no context switch occurs for that core.  

Third, hardware regulators can operate across security boundaries. 
Two leading industry security-oriented technologies, ARM Trustzone 
and Intel SGX [8] can execute both trusted and untrusted code on the 
same physical core while relying on architectural features such as 
specialized instructions to support isolated execution. On such 
architectures, the voltage and frequency regulators typically operate on 
domains that apply to the entire core. Per-core voltage domain has been 
experimented yet limited to the use of linear regulators and thereby 
demonstrated for the applications having a limited range of dynamic 
voltage scaling. To enable a wide range of dynamic voltage scaling, a 
shared DCDC converter is typically employed as in the 805 SoC.  

With the aforementioned prerequisites satisfied, we now detail 

the steps of CLKSCREW in Fig. 2. In this particular attack, we 

consider two cores: victim, and attack cores which respectively 

execute victim and attack threads. The optional third core is a measure 

core, which observes various parameters for our experiment purpose. 

The first task is to clear microarchitectural residual states from prior 

executions since cache-based profiling techniques will be used in later 

steps. To do so, both the victim and attack threads are run multiple 

times in quick succession.  

Measure

Thread

Frequency 

Glitch

Victim

Thread

Attack

Thread

Parameter monitoring 

Targeted Executions 

Meas. 

Core

Victim 

Core

Attack 

Core

Base Frequency

Glitch Frequency

Glitch Duration

Timing Anchor

F
C

L
K

 

Time

 
Fig. 2. CLKSCREW fault injection timing 

 

Next, victim thread is profiled to identify a consistent point of 

execution just before the target code to be faulted. The profiling step 

yields a timing anchor to guide when to deliver the fault injection. In 

some attack scenarios, fine-tuning the exact delivery timing of the fault 

is required. In such cases, attack thread is set to spin-loop with a 

predetermined number of loops before inducing the actual fault. The 

use of these loops consisting of no-op operations can induce timing 

delays with high precision.  

Finally, the attack thread raises the clock frequency of the victim 

core from the base to the glitch frequency level and keeps that 

frequency for a precise number of loops (defined as glitch duration), 

and then restore the frequency to the base level. After this, a typical 

fault-analysis attack algorithm is applied to the fault injection result. 

In some of the experiments, the measure core performs various 

administrative tasks including SPM register monitoring for our 

experiment purpose. The measure core is not essential to the attack. 

The fourth available core in the SnapDragon 805 SoC is either shut 

down or asked to perform regular workloads.   

In the CLKSCREW attack process, several attributes on the 

hardware stack can help identify the attack attempt. For faulting 

injection, the attacker issued OPP must reflect disparate execution 

demands, namely, glitch frequency indicates demanding computation 

and a low voltage indicates low workload. Hence, target voltage and 

frequency and its change from baseline can serve as CLKSCREW 

attack warning. And for the injected fault to be of use to the attacker, 

the controlled timing is another important indicator.  

The duration of the frequency spike and voltage dip can be 

another important feature for the countermeasure. For example, if the 

glitch duration is too long, it can induce too many faults across various 

parts of the target execution and makes the fault analysis infeasible. 

Too many faults can also reboot and freeze the device, which makes 

not only the attacker to fail to acquire faulty results but also users to 



Blacklist Core: Machine-Learning Based Dynamic                                                 ISLPED’18, July 23-25, 2018, Seattle, WA, USA 

think suspiciously on the malfunction. On the other hand, if the glitch 

duration is too short, it can cause no fault and the attack is failed.  
 

3. STATIC PROTECTION 
Countermeasures imposed during design and manufacturing test time 

are considered static protection strategies while runtime protection 

with the adaptive decision is dynamic protection strategies. In this 

section, we will discuss the advantage and disadvantage of the static 

countermeasures, followed by the description of the proposed dynamic 

countermeasure in Sec. 4.  
Static protection strategies against CLKSCREW attack can be 

approached from mainly two angles. One approach is to set a hard limit 

to the voltage and frequency pairings in DVFS systems in each chip so 

as to prevent cores from operating at the condition that may allow 

attacks like CLKSCREW. Unfortunately, in the nanometer CMOS, 

processor cores’ true operational limits exhibit significant variability 

due to process, voltage, and temperature variations, and need to be 

obtained through individual electrical chip testing after manufacturing. 

However, such chip-wise testing is not economically viable, the testing 

would be extremely costly as any additional tests in large production 

volume lead to large manufacturing overhead.  
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Fig. 3. Measured OPPs and vendor-stipulated OPPs across VDDs 

 

The more economical approach is to apply a conservative hard 

limit under which all chips meeting the production specification are 

guaranteed fault-free operation in any reachable frequency and voltage 

conditions. In fact, the manufacturer has provided the OPPs that 

guarantee error-free operation in all of their production chips (called 

vendor-stipulated OPP). Applying such highly conservative hard 

limits to all processors, however, can stifle processor performance and 

energy-efficiency. As shown in Fig. 3, we characterized the true 

operating FCLK of the tested processors, and indeed imposing a hard 

limit based on vendor-stipulated OPPs would severely limit the 

performance capability of the processor from 45% to 6X. 
 

4. DYNAMIC DETECTION & PROTECTION 
4.1. Informative Features of CLKSCREW 
Dynamically blocking of security-wise unsafe OPPs is preferable to 

static blocking. For dynamic protection to function, a measure of self-

tuning is introduced in the design. As the basic trend of unsafe voltage 

and frequency is the same for each processor, a small number of 

parameters can suffice to tailor the regulator limits to each processor. 

These parameters are batch-trained in design time and then adjusted 

during runtime based on the feedback from the processor cores and 

their subsystems. 

In Sec. 2.2, we described the CLKSCREW attack carried out in 

several precise steps. Some of these steps such as core pinning and 

timing profiling are not easily observed on the hardware stack and 

requires software level behavior monitoring and are thus forgone in 

this paper. The basic hardware-accessible features indicative of a 

CLKSCREW attack are (i) low voltage and (ii) sharp increase of clock 

frequency for a short duration, which together induces faults in the 

targeted part of a victim thread execution. Factors influencing the 

timing fault injection are also necessary to consider in the protection 

scheme, some of the most important of which are temperature and 

activities of other cores. SoCs contain a DTM subsystem and thus core 

temperature information is available in both software and hardware.  

We conducted a number of CLKSCREW attacks on the Nexus 6 

device across a range of parameters, namely base frequency, glitch 

frequency, glitch duration, VDD, the number of active cores and their 

FCLKs, and temperature. Fig. 4(a) shows the trends that the glitch 

frequency of successful CLKSCREW attack is proportional to the VDD 

of the victim core. This is expected since the transistors and thus cores 

can operate faster at higher VDD.  

Fig. 4(a) also shows the effect of temperature on the unsafe OPPs. 

Across temperatures, we observe the same trends that the glitch 

frequency increases with VDD. However, the slope is found to be 

temperature-dependent. This is due to so-called inverse temperature 

coefficient effect (ITC) [9], where high temperature makes modern IC 

faster at low VDD but slower at high VDD. This requires non-linear 

classification on detecting CLKSCREW across temperatures.  

Fig. 4(b) shows the impact of the glitch duration. If the attack uses 

a wide glitch duration, it achieves lower success rate. It also makes the 

device more likely to reboot or freeze. This is because the amount of 

injected fault is too much, and affects the operation outside the targeted 

one. On the other hand, shorter glitch durations tend to make it fail to 

inject a sufficient amount of fault. During the glitch duration, the 

processor may not process the data that exercise the critical paths.  

Fig. 4(c) shows the impact of the activity of the core unrelated to 

the CLKSCREW attack. We perform the CLKSCREW attack while 

activate and deactivate the fourth core, titled a spare core, hereafter. 

Interestingly the activation of the spare core and its working clock 

frequency has a non-linear impact on the glitch frequency of the victim 

core. We suspect that electrical coupling of power grids of the 

processor cores may cause this.  
Fig. 4(d) shows the detailed impact of FCLK of the spare core at 

0.79V. The glitch frequency of 2 GHz is sufficient for successful 
CLKSCREW attacks if the spare core runs at the clock frequencies 
below 0.883 GHz, which is interestingly vendor-stipulated OPP at the 
VDD of 0.79V. However, the glitch frequency increases to 2.5 GHz with 
the higher clock frequency of the spare core. Considering all the 
complex relationships between features denoting CLKSCREW attack, 
dynamic response to regulator commands is invaluable to its mitigation. 
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Fig. 4. (a) VDD and temperature effects; (b) glitch duration impact; (c,d) spare core activity effects on successful CLKSCREW attacks. 
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4.2. Detection and Protection Algorithm 
Fig. 5 shows our algorithm to detect and mitigate CLKSCREW. 

During runtime, the algorithm is triggered at each issued clock 

frequency regulation command. We designed the voltage regulator 

control not trigger the algorithm execution since it is of a rougher 

granularity and less agile in its switch. In CLKSCREW, voltage is 

controlled during the preparation stage to lower the glitch frequency 

required to induce fault, not as a nob in precision fault injection. 
Once triggered, the algorithm first performs feature extraction, 

which detects glitch dynamics by inspecting the current and past clock 

frequency commands through a sliding window. Once it detects glitch 

dynamics, it extracts three key parameters discussed earlier in Fig. 2, 

namely base frequency, glitch frequency, and glitch duration.  

These glitch parameters along with other parameters, namely 

clock frequencies of other cores, VDD, and temperatures, are the inputs 

to a multi-layer perceptron (MLP) neural network. The role of this 

network is feature dimensionality reduction, i.e., to project the multi-

dimensional features onto a simple 1-dimensional space. This enables 

to represent the decision boundary in a single scalar and thus make it 

easy to adjust during runtime based on the timing error flag. 

Feature Projection (MLP)

Result   Decision 

Boundary?

Unsafe setting:

Restricts PLL/Notifies OS 

Timing Error 

Reported?

Feature Extraction

Yes

No

No

New Frequency-

Change Command

Update Decision 

Boundary

Safe setting

Yes

 
Fig. 5. Proposed mitigation strategy 

 

Specifically, the MLP is composed of two fully connected layers. 

We swept the hidden neuron count and found 50 units to be optimal 

for the accuracy and complexity trade-off. There are eight inputs, one 

bias, and one output neuron in this implementation. We chose the 

widely-deployed ReLU for the activation function of the hidden 

neurons, which leaves the positive input unchanged and sets negative 

inputs to zero, for its low hardware cost. The output of output neuron, 

on the other hand, is not rectified, i.e., simply producing the weighted 

sum of the last hidden layer. This output is then compared directly to 

a decision boundary, whose initial value is set to 0.5. Exceeding the 

boundary would mean the current OPP is unsafe and thus classified to 

the blacklist, at which point the PLL is flagged to abandon the current 

frequency change command.  

The weights of the MLP are trained during design time in a batch, 

aimed to model the approximate behavior of CLKSCREW. We use the 

classic back-propagation to train the network [10]. The weights are not 

updated dynamically due to the high cost of implementing dedicated 

training algorithm in hardware although online training of weights 

would be interesting for future research. On the other hand, we 

designed the decision boundary to be updated during runtime, aimed 

to account for chip-wise subtle variation impact on unsafe OPPs. 

Specifically, in the case that the MLP output indicates the glitch 

dynamics as a safe OPP but a timing error is reported, our algorithm 

lowers the decision boundary. Note that this online update of the 

decision boundary can be viewed as training of the activation function 

of the output layer in the MLP. 

In this work, we assume to use hardware, i.e., TRC and EDAC, 

to acquire the timing error flags and adjust the decision boundary. This 

mechanism, however, can be further extended so that such hardware 

flags the OS to investigate the source of the fault, e.g., whether it is a 

malicious kernel. Core-pinning, rapid PLL commands, and other 

potential CLKSCREW characteristics can be used in the software-

level investigation to determine whether MLP output decision 

boundary should be updated. In the case considered in this paper, the 

decision boundary is always updated regardless whether the fault is 

from CLKSCREW injection or natural causes like circuit aging. In this 

implementation, the circuit gradually becomes a general fault 

mitigation circuit in typical use (where CLKSCREW attack is rare if 

at all). In the event of the mitigation circuit failure, the processor 

requires leak-free correction. Even if a processor has timing error 

prediction/detection circuits, it is still desirable to have a CLKSCREW 

detection mechanism like the proposed one because timing-error 

circuits cannot differentiate between CLKSCREW and other various 

fault-inducing scenarios such as voltage droop and device aging.  
 

4.3.  Algorithm Experiment 
We designed the proposed algorithm in a fixed point number to map it 

efficiently onto hardware. Each input feature to the MLP uses 16 bits. 

The weight of the MLP is 12 bits. We use 16 bits for most of the other 

parts of the algorithm.  

 
Fig. 6. A snapshot of the dataset of the settings that yield 

successful and unsuccessful CLKSCREW attacks.  

 

We trained and tested the proposed algorithms using the test data 

we collected by performing CLKSCREW attacks on the Nexus 6 

device. Fig. 6 shows a subset of the settings that succeed CLKSCREW 

attacks. Note that only three features are shown in the figure whereas 

each setting includes other features (e.g., temperature). The dataset 

contains 578 unsafe and 384 safe settings. Some of the safe settings 

exhibit high glitch frequency if the glitch duration is very short. 

Interestingly those do not incur either of faults, reboots, and freezes. 

We remove safe settings that are too close to the unsafe settings to ease 

the task of dynamic blacklisting.  

We trained the MLP using about 640 settings randomly picked 

from the dataset. The label is set to 1 for unsafe settings and 0 to safe 

settings. Fig. 7(a) shows the output of the MLP before training. The 

distributions of safe and unsafe settings are largely overlapped. After 

training, as shown in Fig. 7(b), however, the overlap is significantly 

reduced.  The overlap would contribute false rejection and false alarm. 
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The initial decision boundary is set to 0.5 since the MLP is trained to 

produce 1 for unsafe and 0 for safe settings. 

We then use about 320 randomly-selected settings for testing the 

online adjustment of the decision boundary. The settings used for 

training are not used for this testing. Fig. 8 shows the output of the 

MLP. Most of the test settings are projected into the correct part of the 

feature space, i.e., unsafe settings make the MLP produce values 

greater than the decision boundary while safe settings smaller than the 

boundary. In this particular test, one setting (setting index = 40) has 

the MLP to produce the wrong value; thus the algorithm decrements 

the decision boundary. 
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Fig. 7. Feature projection results before training (top) and after 

training (bottom) 

 

Fig. 9 shows the accuracy of the algorithm in the fixed-point 

number. The algorithm can detect and mitigate CLKSCREW with 

online adjustment at the probability of 99.69%. Without online 

adjustment, i.e., the static boundary, it achieves 98.38%. The false 

detection ratio (i.e., flagging a safe setting as unsafe) is 0.92% with or 

without online adjustment. The benefit of the online adjustment is 

expected greater for the experiment over multiple devices.  

 

5. BLACKLIST CORE DESIGN 
5.1. System Architecture  
We designed the BL core that implements the proposed algorithm.  We 
will present the microarchitecture and circuits of the BL core in detail, 
but before that, we first want to describe the system architecture, i.e., 
the necessary system requirements to accommodate the BL core.  

Several security considerations are necessary for the BL core to 

be effective. First, the countermeasure must not be accessible from the 

malicious kernel. The boundary setting which is modulated by timing 

error feedback is not software exposed in normal operation, however, 

OS should retain the privilege to control the countermeasure to limit 

overly aggressive adjustment of decision boundary that severely limits 

processor performance. Hence, the OS cannot have full freedom in 

boundary setting register, least the mitigation strategy be sidestepped 

completely.  
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Fig. 8. Online adjustment of the decision boundary 
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Fig. 9. The accuracy of our algorithm. The same results are 

achieved for the fixed- and float-point versions of the algorithm 

 

Second, the BL core must not be conducive for fault injection via 
forced timing violation. The BL core should operate on the base 
frequency such that the operating voltage cannot be lowered enough to 
cause timing violation before the system freezes or reboots. 
Alternatively, a separate higher voltage domain can be used for the 
design, however, this is not the preferred choice as a separate voltage 
domain is not as readily available as the base frequency. 

Third, there is a timing consideration for the BL core since the 
CLKSCREW attack is identified after a PLL configuration is already 
set in the control registers. Hence, the identification process must be 
completed before the frequency change is applied to the victim core. 
Frequency regulation is a relatively long procedure (in the time constant 
of µs). Thus the goal is to hide the latency of BL core computation 
within this phase-locking period of PLL circuits. We optimized the 
microarchitecture of the BL core such that it can finish the computation 
less than ~1 µs. Alternatively, although we do not pursue in this paper, 
the PLL could be designed so as to be required to be flagged safe by the 
mitigation circuit before regulating the frequency. This adds some cost 
in PLL control logic and adds some latency to frequency regulation. 

  

5.2. Microarchitecture 
Fig. 10 shows the microarchitecture of the proposed BL core. We 
designed each BL core to support one Krait core but multiple BL cores 
can be consolidated to save hardware redundancies. It performs the 
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algorithm that we outlined in Sec. 4. The microarchitecture consists of 
feature extraction, MLP, and decision. In the feature extraction, the 
desired features are collected from regulator configuration registers and 
also computed from simple feature extraction circuits such as a counter 
for the PLL command interval. The features are modified through shift 
and truncation operations to reach its appropriate value scale and bit 
precision. 

Weight memory 

(for MLP)

Feature extraction

Feature register

Weight Register
Input/Activation 

Register

MAC A

ReLU A

MAC B

ReLU B

                   Decision 

                   Unit
Result Register

`

Timing 

error 

CLKSCREW 

detection

Temp, VDD

Frequency 

Configuration

Boundary 

Register

 

Fig. 10. BL core microarchitecture 
 

 
Fig. 11. BL core layout in a 65 nm CMOS 

 

In the MLP, the main computational primitive is the multiply-

and-accumulate (MAC). The BL core needs to finish the calculation 

on the classification task before the PLL operation. We, therefore, 

include two MAC computing units (MAC A and MAC B in Fig. 10) 

such that the computation delay of the BL core is shorter than the PLL 

operation and allow the blacklist event to stop the PLL from applying 

the fault-inducing frequency setting to the victim core. 

The decision unit takes the output of MLP and compares it against 

the decision boundary. It also takes the timing error flag from TRC or 

EDAC and adjusts the boundary if it finds a discrepancy between the 

MLP output and the timing error flag.  

We designed the BL core in Verilog HDL and implement it in a 

65nm CMOS process through the standard cell design flow. Fig. 11 

shows the layout whose area is 0.09 (=0.6 × 0.15) mm2. As marked, 

close to 50% of the area is used by the weight memory for the MLP 

operation. It is implemented in an industrial 6-T SRAM array. A single 

Krait core takes ~2.6 mm2 in a 28 nm [17]. The normalized area of the 

BL core is thus ~0.64% of that of the single Krait core. We further 

characterized the delay and power consumption of the BL core via the 

static timing and power analysis tools. We use the post-layout netlist 

with annotated parasitics and actual switching vectors for nodes from 

the Verilog simulation of the netlist. The accuracy of the flow is 

calibrated to match the SPICE simulation for a benchmark circuit. The 

BL core consumes 10.5mW at the clock frequency of 250 MHz and 

the supply voltage of 1V. It takes about 280 cycles to complete one 

detection and boundary adjustment if needed. The total latency is 

simulated to be 1.11 µs.  

6. CONCLUSION 
In this paper, we propose a dynamic blacklisting technique to detect and 
mitigate the power-management based fault injection attack titled 
CLKSCREW. We devised an algorithm which performs feature 
extraction, dimensionality reduction, and decision. The algorithm is 
trained in the design time and also supports online adjustment. We 
designed the BL core hardware that performs the algorithm. The BL 
core is optimized to make a minimal impact on silicon area and power 
dissipation. The decision latency of the core is also optimized to the 
level that can be hidden in a typical PLL locking latency. 
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