
Blacklist Core: Machine-Learning Based Dynamic Operating-Performance-Point Blacklisting for
Mitigating Power-Management Security Attacks

Sheng Zhang, Adrian Tang, Zhewei Jiang, Simha Sethumadhavan, Mingoo Seok

 Columbia University

ABSTRACT
Most modern computing devices make available fine-grained control

of operating frequency and voltage for power management. These

interfaces, as demonstrated by recent attacks, open up a new class of

software fault injection attacks that compromise security on

commodity devices. CLKSCREW, a recently-published attack that

stretches the frequency of devices beyond their operational limits to

induce faults, is one such attack. Statically and permanently limiting

frequency and voltage modulation space, i.e., guard-banding, could

mitigate such attacks but it incurs large performance degradation and

long testing time. Instead, in this paper, we propose a run-time

technique which dynamically blacklists unsafe operating performance

points using a neural-net model. The model is first trained offline in

the design time and then subsequently adjusted at run-time by

inspecting a selected set of features such as power management control

registers, timing-error signals, and core temperature. We designed the

algorithm and hardware, titled a BlackList (BL) core, which is capable

of detecting and mitigating such power management-based security

attack at high accuracy. The BL core incurs a reasonably small amount

of overhead in power, delay, and area.

CCS CONCEPTS
Security and privacy → Security in hardware → Hardware attacks and

countermeasures → Side-channel analysis and countermeasures

KEYWORDS
Security, power management, operating performance point, blacklist

1. INTRODUCTION
Power management in modern commodity devices has become ever
more important, especially in mobile and embedded devices, due to
considerations like battery life and portability. The most widely adopted
energy management solution is dynamic voltage and frequency scaling
(DVFS) in which supply voltage (VDD) and clock frequency (FCLK) of
a processor core are modulated based on computational demand. DVFS
has fine cooperative granularities between software drivers and
hardware voltage and frequency regulators.

The design of DVFS systems requires a cross-stack effort, but the
security concern has been often overlooked. A new class of exploitation
vector termed CLKSCREW is uncovered recently exploiting the
security-oblivious power management design [1]. Under most widely
deployed DVFS devices, processors can be pushed beyond a normal
operation limit to produce faulty computation via software access to
power management. These faults can be induced from lower privileged
software across security boundaries to manipulate sensitive
computations. Attacks like CLKSCREW pose a much more serious
security threat than the traditional physical hardware-based fault-
injection attacks as they can be conducted using no more than a
malicious software kernel driver. CLKSCREW has been demonstrated
to extract a secret AES (Advanced Encryption Standard) key embedded
within ARM Trustzone [2] and load a self-signed code into Trustzone,
through low privilege software.

It is theoretically possible to mitigate those attacks by permanently
and statically limiting the frequency and voltage modulation range in

the DVFS system, i.e., guard-banding. But such static measures can
incur large performance degradation due to the variability of modern
digital processors. Chip-wise post-fabrication testing may enable us to
set a custom limit for each chip, alleviating the performance
degradation as compared to the use of a single limit for all chips, but it
increases testing time and quickly becomes economically infeasible.

In this paper, to avoid those limitations of static methods, we
propose a dynamic countermeasure that can blacklist fault-inducing
operating performance points (OPP) during run-time. The main idea is
to detect and mitigate the power management based attack like
CLKSCREW using an embedded machine learning core. The core is
initially trained in the design time based on the informative features of
CLKSCREW, such as voltage and frequency regulation characteristics
and temperature. Then, during runtime, the core inspects those along
with timing error flags to further update/adjust the blacklist model.
Once the core discovers attacks, it can ignore frequency and voltage
regulation commands that trigger the attack discovery. It can also notify
the operating system (OS) to profile the source processes of the attacks.

Fig. 1 shows a quad-core processor architecture based on the
Qualcomm Snapdragon 805 system-on-chip (SoC) in the Nexus 6
smartphone, which we used in the experiments throughout this paper.
The original SoC has four per-core phase-locked-loops (PLL) for clock
frequency modulation, one unified low-dropout regulator (LDO) for
voltage regulation, and a dynamic thermal management (DTM)
subsystem for managing temperature-related events. As shown in Fig.
1, we have added the countermeasure hardware comprising (i) a
machine-learning core capable of identifying CLKSCREW attack,
titled a blacklist core (BL core) and (ii) timing error detection/prediction
hardware such as tunable replica circuits (TRC) [14-16] and in-situ
error detection and correction circuits (EDAC) [3,11-13] for acquiring
timing-error flags. The state-of-the-art EDAC techniques incur small
silicon area overhead of <5% of a core area. They can also support
various microarchitectures and circuits [3,11-13]. TRC can incur less
silicon area overhead and design complexity than EDAC at the cost of
more guardband to be added.

PMA8084

PMIC (off-chip)

SPM
PLL

(N * 19.2MHz)

DTM

CoreCoreCoreKrait Core

Supply

Voltage

Proposed

Blacklist Core FCLK, VDD configuration,

Temperature, Timing error

Timing error

4

Fig. 1. Processor architecture with the proposed countermeasure

The primary measure for the proposed detection and mitigation of
CLKSCREW is the BL core. The core performs feature extraction from
various microarchitecture and circuit parameters. It then performs
multilayer perceptron (MLP) based feature dimensionality reduction
with which the core categorizes the OPP curve as a compressed feature,
i.e., project an ensemble of features into a low-dimensional space, using
weights trained in design time. During runtime, the core dynamically
adjusts the decision boundary between safe and unsafe operating
conditions in the low-dimensional feature space by the timing error
detection and prediction. This makes the detection and mitigation to be

ISLPED '18, July 23–25, 2018, Seattle, WA, USA © 2018

Association for Computing Machinery. ACM ISBN 978-1-4503-

5704-3/18/07 $15.00 https://doi.org/10.1145/3218603.3218624

ISLPED’18, July 23-25, 2018, Seattle, WA, USA S. Zhang et al.

customized to each specific core and its operating environment during
the runtime.

We designed the aforementioned machine-learning algorithm in
the fixed-point arithmetic. We then designed the microarchitecture to
execute the algorithm with minimal area, delay, and power. Our
proposed countermeasure demonstrates 99.69% accuracy in mitigating
CLKSCREW, where undiscovered attacks are corrected by timing error
prediction/detection circuits and feedback to the decision boundary to
further improve the mitigation success rate. The BL core takes 1.11 µs
to identify a potential attack, which can be masked within the latency
of PLL lock time. It takes the silicon footprint of 0.09 mm2 in a 65 nm
CMOS process and consumes the power of 10.5 mW at VDD=1V.

The remainder of the paper is organized as follows. In Sec. 2, we
will discuss the operating mechanism of the CLKSCREW attack. In Sec.
3, we will discuss the limitations of static protection. In Sec. 4, we will
detail the mitigation strategy for the proposed dynamic blacklisting. In
Sec. 5, we will describe the microarchitecture of the proposed BL core
along with the experimental results. The paper will conclude in Sec. 6.

2. CLKSCREW ATTACK
2.1. Background
DVFS regulates VDD and FCLK according to runtime task demands. To
track task demands and adjust OPP at acceptable latency and
granularity, DVFS requires OS-level power management services and
vendor-specific regulator drivers as well as the hardware regulators. For
instance, in our experiment in this paper, we used the Krait cores in
Qualcomm’s SnapDragon 805 SoC on a Nexus 6 device, where
frequency and voltage regulators are software exposed to Krait cores.

The voltage regulator is integrated in a separate power management
integrated circuit (PMIC) chip, which is not exposed to software
interfaces directly. As shown in Fig. 1, the core voltage is indirectly
managed by the subsystem power manager (SPM), a hardware block in
the Qualcomm SnapDragon 805 SoC that maintains a set of control
registers that interface with the PMIC chip. SPM is accessible to
privileged software like a kernel driver through these memory-mapped
control registers. Likewise, frequency regulators also expose the
multiplier and selector control of the PLLs in these registers to software.

Software support for DVFS comprises vendor-specific regulator
drivers and OS-level power management services. The drivers provide
a convenient means for mechanisms in the upper layers of the stack,
such as the Linux CPUfreq power governor [4] to dynamically direct
the voltage and frequency scaling. DVFS requires real-time feedback
on the system workload profile to guide the optimization of
performance with respect to power dissipation. This feedback may rely
on layer-specific information that may only be efficiently accessible
from certain system layers. For example, instantaneous system
utilization levels are readily available to the OS kernel layer. As such,
the Linux CPUfreq power governor is well-positioned at that layer to
initiate runtime changes to the operating voltage and frequency based
on these whole-system measures.

2.2. Fault Injection Mechanism
For a successful CLKSCREW attack, several hardware conditions have
to be met. First, hardware regulators have no safeguard in place to
prevent unsafe OPP configurations. This is observed in several lines of
consumer mobile devices [1].

Second, an unsafe operation needs be contained within a core to
attack (called victim core hereafter), separate from the code that
performs the attack. This stipulates that multi-core processors would
operate in different frequency, and attack and victim code can be pinned
to different cores from software. This core pinning strategy is possible
due to the deployment of increasingly heterogeneous processors like the
ARM big.LITTLE [5], and emerging technologies such as Intel PCPS
[6] and Qualcomm aSMP [7]. With core pinning, the attack code can
manipulate the frequency of the victim core without self-faulting. In
addition, interrupts need to be disabled during the duration of victim
code execution to ensure that no context switch occurs for that core.

Third, hardware regulators can operate across security boundaries.
Two leading industry security-oriented technologies, ARM Trustzone
and Intel SGX [8] can execute both trusted and untrusted code on the
same physical core while relying on architectural features such as
specialized instructions to support isolated execution. On such
architectures, the voltage and frequency regulators typically operate on
domains that apply to the entire core. Per-core voltage domain has been
experimented yet limited to the use of linear regulators and thereby
demonstrated for the applications having a limited range of dynamic
voltage scaling. To enable a wide range of dynamic voltage scaling, a
shared DCDC converter is typically employed as in the 805 SoC.

With the aforementioned prerequisites satisfied, we now detail

the steps of CLKSCREW in Fig. 2. In this particular attack, we

consider two cores: victim, and attack cores which respectively

execute victim and attack threads. The optional third core is a measure

core, which observes various parameters for our experiment purpose.

The first task is to clear microarchitectural residual states from prior

executions since cache-based profiling techniques will be used in later

steps. To do so, both the victim and attack threads are run multiple

times in quick succession.

Measure

Thread

Frequency

Glitch

Victim

Thread

Attack

Thread

Parameter monitoring

Targeted Executions

Meas.

Core

Victim

Core

Attack

Core

Base Frequency

Glitch Frequency

Glitch Duration

Timing Anchor

F
C

L
K

Time

Fig. 2. CLKSCREW fault injection timing

Next, victim thread is profiled to identify a consistent point of

execution just before the target code to be faulted. The profiling step

yields a timing anchor to guide when to deliver the fault injection. In

some attack scenarios, fine-tuning the exact delivery timing of the fault

is required. In such cases, attack thread is set to spin-loop with a

predetermined number of loops before inducing the actual fault. The

use of these loops consisting of no-op operations can induce timing

delays with high precision.

Finally, the attack thread raises the clock frequency of the victim

core from the base to the glitch frequency level and keeps that

frequency for a precise number of loops (defined as glitch duration),

and then restore the frequency to the base level. After this, a typical

fault-analysis attack algorithm is applied to the fault injection result.

In some of the experiments, the measure core performs various

administrative tasks including SPM register monitoring for our

experiment purpose. The measure core is not essential to the attack.

The fourth available core in the SnapDragon 805 SoC is either shut

down or asked to perform regular workloads.

In the CLKSCREW attack process, several attributes on the

hardware stack can help identify the attack attempt. For faulting

injection, the attacker issued OPP must reflect disparate execution

demands, namely, glitch frequency indicates demanding computation

and a low voltage indicates low workload. Hence, target voltage and

frequency and its change from baseline can serve as CLKSCREW

attack warning. And for the injected fault to be of use to the attacker,

the controlled timing is another important indicator.

The duration of the frequency spike and voltage dip can be

another important feature for the countermeasure. For example, if the

glitch duration is too long, it can induce too many faults across various

parts of the target execution and makes the fault analysis infeasible.

Too many faults can also reboot and freeze the device, which makes

not only the attacker to fail to acquire faulty results but also users to

Blacklist Core: Machine-Learning Based Dynamic ISLPED’18, July 23-25, 2018, Seattle, WA, USA

think suspiciously on the malfunction. On the other hand, if the glitch

duration is too short, it can cause no fault and the attack is failed.

3. STATIC PROTECTION
Countermeasures imposed during design and manufacturing test time

are considered static protection strategies while runtime protection

with the adaptive decision is dynamic protection strategies. In this

section, we will discuss the advantage and disadvantage of the static

countermeasures, followed by the description of the proposed dynamic

countermeasure in Sec. 4.
Static protection strategies against CLKSCREW attack can be

approached from mainly two angles. One approach is to set a hard limit

to the voltage and frequency pairings in DVFS systems in each chip so

as to prevent cores from operating at the condition that may allow

attacks like CLKSCREW. Unfortunately, in the nanometer CMOS,

processor cores’ true operational limits exhibit significant variability

due to process, voltage, and temperature variations, and need to be

obtained through individual electrical chip testing after manufacturing.

However, such chip-wise testing is not economically viable, the testing

would be extremely costly as any additional tests in large production

volume lead to large manufacturing overhead.

0.6 0.7 0.8 0.9 1.0 1.1 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Measured Maximum OPP

 Vendor-Stipulated OPP

C
lo

c
k
 f

re
q

u
e

n
c
y

 (
G

H
z
)

VDD (V)

6X

45%

Fig. 3. Measured OPPs and vendor-stipulated OPPs across VDDs

The more economical approach is to apply a conservative hard

limit under which all chips meeting the production specification are

guaranteed fault-free operation in any reachable frequency and voltage

conditions. In fact, the manufacturer has provided the OPPs that

guarantee error-free operation in all of their production chips (called

vendor-stipulated OPP). Applying such highly conservative hard

limits to all processors, however, can stifle processor performance and

energy-efficiency. As shown in Fig. 3, we characterized the true

operating FCLK of the tested processors, and indeed imposing a hard

limit based on vendor-stipulated OPPs would severely limit the

performance capability of the processor from 45% to 6X.

4. DYNAMIC DETECTION & PROTECTION
4.1. Informative Features of CLKSCREW
Dynamically blocking of security-wise unsafe OPPs is preferable to

static blocking. For dynamic protection to function, a measure of self-

tuning is introduced in the design. As the basic trend of unsafe voltage

and frequency is the same for each processor, a small number of

parameters can suffice to tailor the regulator limits to each processor.

These parameters are batch-trained in design time and then adjusted

during runtime based on the feedback from the processor cores and

their subsystems.

In Sec. 2.2, we described the CLKSCREW attack carried out in

several precise steps. Some of these steps such as core pinning and

timing profiling are not easily observed on the hardware stack and

requires software level behavior monitoring and are thus forgone in

this paper. The basic hardware-accessible features indicative of a

CLKSCREW attack are (i) low voltage and (ii) sharp increase of clock

frequency for a short duration, which together induces faults in the

targeted part of a victim thread execution. Factors influencing the

timing fault injection are also necessary to consider in the protection

scheme, some of the most important of which are temperature and

activities of other cores. SoCs contain a DTM subsystem and thus core

temperature information is available in both software and hardware.

We conducted a number of CLKSCREW attacks on the Nexus 6

device across a range of parameters, namely base frequency, glitch

frequency, glitch duration, VDD, the number of active cores and their

FCLKs, and temperature. Fig. 4(a) shows the trends that the glitch

frequency of successful CLKSCREW attack is proportional to the VDD

of the victim core. This is expected since the transistors and thus cores

can operate faster at higher VDD.

Fig. 4(a) also shows the effect of temperature on the unsafe OPPs.

Across temperatures, we observe the same trends that the glitch

frequency increases with VDD. However, the slope is found to be

temperature-dependent. This is due to so-called inverse temperature

coefficient effect (ITC) [9], where high temperature makes modern IC

faster at low VDD but slower at high VDD. This requires non-linear

classification on detecting CLKSCREW across temperatures.

Fig. 4(b) shows the impact of the glitch duration. If the attack uses

a wide glitch duration, it achieves lower success rate. It also makes the

device more likely to reboot or freeze. This is because the amount of

injected fault is too much, and affects the operation outside the targeted

one. On the other hand, shorter glitch durations tend to make it fail to

inject a sufficient amount of fault. During the glitch duration, the

processor may not process the data that exercise the critical paths.

Fig. 4(c) shows the impact of the activity of the core unrelated to

the CLKSCREW attack. We perform the CLKSCREW attack while

activate and deactivate the fourth core, titled a spare core, hereafter.

Interestingly the activation of the spare core and its working clock

frequency has a non-linear impact on the glitch frequency of the victim

core. We suspect that electrical coupling of power grids of the

processor cores may cause this.
Fig. 4(d) shows the detailed impact of FCLK of the spare core at

0.79V. The glitch frequency of 2 GHz is sufficient for successful
CLKSCREW attacks if the spare core runs at the clock frequencies
below 0.883 GHz, which is interestingly vendor-stipulated OPP at the
VDD of 0.79V. However, the glitch frequency increases to 2.5 GHz with
the higher clock frequency of the spare core. Considering all the
complex relationships between features denoting CLKSCREW attack,
dynamic response to regulator commands is invaluable to its mitigation.

0.7 0.8 0.9 1.0 1.1 1.2

1.6

2.0

2.4

2.8

3.2

M
a

x
im

u
m

 F
re

q
u

e
n

c
y

(G
H

z
)

VDD (V)

 -8
o
C

 0
o
C

 15
o
C

 30
o
C

 38
o
C

0.1 10 1000 100000
0

5

10

15

20

25

30

A
tt

a
c
k
 S

u
c

c
e
s
s
 R

a
ti

o
 (

%
)

Glitch Duration (us)

70 attack attmpts at each glitch duration

0.7 0.8 0.9 1.0 1.1

2.0

2.4

2.8

3.2

3.6

A
v
g

.
G

li
tc

h
 F

re
q

u
e
n

c
y
 (

G
H

z
)

VDD (V)

 3 cores online

 4 cores online (spare core F
CLK

=1.03 GHz)

 4 cores online (1.96 GHz)

 4 cores online (2.65 GHz)

0.0 0.5 1.0
1.8

2.0

2.2

2.4

2.6

A
v

g
.
G

li
tc

h
 F

re
q

u
e
n

c
y
 (

G
H

z
)

Spare core F
CLK

 (GHz)

Victim core base frequency = 1.46 GHz

0.883GHz:

Vendor-Stipulated

F
CLK

 at 0.79V

Fig. 4. (a) VDD and temperature effects; (b) glitch duration impact; (c,d) spare core activity effects on successful CLKSCREW attacks.

ISLPED’18, July 23-25, 2018, Seattle, WA, USA S. Zhang et al.

4.2. Detection and Protection Algorithm
Fig. 5 shows our algorithm to detect and mitigate CLKSCREW.

During runtime, the algorithm is triggered at each issued clock

frequency regulation command. We designed the voltage regulator

control not trigger the algorithm execution since it is of a rougher

granularity and less agile in its switch. In CLKSCREW, voltage is

controlled during the preparation stage to lower the glitch frequency

required to induce fault, not as a nob in precision fault injection.
Once triggered, the algorithm first performs feature extraction,

which detects glitch dynamics by inspecting the current and past clock

frequency commands through a sliding window. Once it detects glitch

dynamics, it extracts three key parameters discussed earlier in Fig. 2,

namely base frequency, glitch frequency, and glitch duration.

These glitch parameters along with other parameters, namely

clock frequencies of other cores, VDD, and temperatures, are the inputs

to a multi-layer perceptron (MLP) neural network. The role of this

network is feature dimensionality reduction, i.e., to project the multi-

dimensional features onto a simple 1-dimensional space. This enables

to represent the decision boundary in a single scalar and thus make it

easy to adjust during runtime based on the timing error flag.

Feature Projection (MLP)

Result Decision

Boundary?

Unsafe setting:

Restricts PLL/Notifies OS

Timing Error

Reported?

Feature Extraction

Yes

No

No

New Frequency-

Change Command

Update Decision

Boundary

Safe setting

Yes

Fig. 5. Proposed mitigation strategy

Specifically, the MLP is composed of two fully connected layers.

We swept the hidden neuron count and found 50 units to be optimal

for the accuracy and complexity trade-off. There are eight inputs, one

bias, and one output neuron in this implementation. We chose the

widely-deployed ReLU for the activation function of the hidden

neurons, which leaves the positive input unchanged and sets negative

inputs to zero, for its low hardware cost. The output of output neuron,

on the other hand, is not rectified, i.e., simply producing the weighted

sum of the last hidden layer. This output is then compared directly to

a decision boundary, whose initial value is set to 0.5. Exceeding the

boundary would mean the current OPP is unsafe and thus classified to

the blacklist, at which point the PLL is flagged to abandon the current

frequency change command.

The weights of the MLP are trained during design time in a batch,

aimed to model the approximate behavior of CLKSCREW. We use the

classic back-propagation to train the network [10]. The weights are not

updated dynamically due to the high cost of implementing dedicated

training algorithm in hardware although online training of weights

would be interesting for future research. On the other hand, we

designed the decision boundary to be updated during runtime, aimed

to account for chip-wise subtle variation impact on unsafe OPPs.

Specifically, in the case that the MLP output indicates the glitch

dynamics as a safe OPP but a timing error is reported, our algorithm

lowers the decision boundary. Note that this online update of the

decision boundary can be viewed as training of the activation function

of the output layer in the MLP.

In this work, we assume to use hardware, i.e., TRC and EDAC,

to acquire the timing error flags and adjust the decision boundary. This

mechanism, however, can be further extended so that such hardware

flags the OS to investigate the source of the fault, e.g., whether it is a

malicious kernel. Core-pinning, rapid PLL commands, and other

potential CLKSCREW characteristics can be used in the software-

level investigation to determine whether MLP output decision

boundary should be updated. In the case considered in this paper, the

decision boundary is always updated regardless whether the fault is

from CLKSCREW injection or natural causes like circuit aging. In this

implementation, the circuit gradually becomes a general fault

mitigation circuit in typical use (where CLKSCREW attack is rare if

at all). In the event of the mitigation circuit failure, the processor

requires leak-free correction. Even if a processor has timing error

prediction/detection circuits, it is still desirable to have a CLKSCREW

detection mechanism like the proposed one because timing-error

circuits cannot differentiate between CLKSCREW and other various

fault-inducing scenarios such as voltage droop and device aging.

4.3. Algorithm Experiment
We designed the proposed algorithm in a fixed point number to map it

efficiently onto hardware. Each input feature to the MLP uses 16 bits.

The weight of the MLP is 12 bits. We use 16 bits for most of the other

parts of the algorithm.

Fig. 6. A snapshot of the dataset of the settings that yield

successful and unsuccessful CLKSCREW attacks.

We trained and tested the proposed algorithms using the test data

we collected by performing CLKSCREW attacks on the Nexus 6

device. Fig. 6 shows a subset of the settings that succeed CLKSCREW

attacks. Note that only three features are shown in the figure whereas

each setting includes other features (e.g., temperature). The dataset

contains 578 unsafe and 384 safe settings. Some of the safe settings

exhibit high glitch frequency if the glitch duration is very short.

Interestingly those do not incur either of faults, reboots, and freezes.

We remove safe settings that are too close to the unsafe settings to ease

the task of dynamic blacklisting.

We trained the MLP using about 640 settings randomly picked

from the dataset. The label is set to 1 for unsafe settings and 0 to safe

settings. Fig. 7(a) shows the output of the MLP before training. The

distributions of safe and unsafe settings are largely overlapped. After

training, as shown in Fig. 7(b), however, the overlap is significantly

reduced. The overlap would contribute false rejection and false alarm.

Blacklist Core: Machine-Learning Based Dynamic ISLPED’18, July 23-25, 2018, Seattle, WA, USA

The initial decision boundary is set to 0.5 since the MLP is trained to

produce 1 for unsafe and 0 for safe settings.

We then use about 320 randomly-selected settings for testing the

online adjustment of the decision boundary. The settings used for

training are not used for this testing. Fig. 8 shows the output of the

MLP. Most of the test settings are projected into the correct part of the

feature space, i.e., unsafe settings make the MLP produce values

greater than the decision boundary while safe settings smaller than the

boundary. In this particular test, one setting (setting index = 40) has

the MLP to produce the wrong value; thus the algorithm decrements

the decision boundary.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

20

40

60

80

C
o

u
n

t

MLP output at pre-training

 Blacklist

 Whitelist

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

10

20

30

40

50

60

70

label for

unsafe settings

C
o

u
n

t

MLP output at post-training

 Blacklist

 Whitelist

label for

safe settings

Fig. 7. Feature projection results before training (top) and after

training (bottom)

Fig. 9 shows the accuracy of the algorithm in the fixed-point

number. The algorithm can detect and mitigate CLKSCREW with

online adjustment at the probability of 99.69%. Without online

adjustment, i.e., the static boundary, it achieves 98.38%. The false

detection ratio (i.e., flagging a safe setting as unsafe) is 0.92% with or

without online adjustment. The benefit of the online adjustment is

expected greater for the experiment over multiple devices.

5. BLACKLIST CORE DESIGN
5.1. System Architecture
We designed the BL core that implements the proposed algorithm. We
will present the microarchitecture and circuits of the BL core in detail,
but before that, we first want to describe the system architecture, i.e.,
the necessary system requirements to accommodate the BL core.

Several security considerations are necessary for the BL core to

be effective. First, the countermeasure must not be accessible from the

malicious kernel. The boundary setting which is modulated by timing

error feedback is not software exposed in normal operation, however,

OS should retain the privilege to control the countermeasure to limit

overly aggressive adjustment of decision boundary that severely limits

processor performance. Hence, the OS cannot have full freedom in

boundary setting register, least the mitigation strategy be sidestepped

completely.

0 50 100 150 200 250 300
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Unsafe

 Safe

Setting Index

D
e
c
is

io
n

 B
o

u
n

d
a
ry

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no adjustment

M
L

P
 O

u
tp

u
t

boundary

adjusted

Fig. 8. Online adjustment of the decision boundary

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Online adj.

 No online adj.

F
a
ls

e
 D

e
te

c
ti

o
n

 E
rr

o
r

(%
)

True Detection Error (%)

Fig. 9. The accuracy of our algorithm. The same results are

achieved for the fixed- and float-point versions of the algorithm

Second, the BL core must not be conducive for fault injection via
forced timing violation. The BL core should operate on the base
frequency such that the operating voltage cannot be lowered enough to
cause timing violation before the system freezes or reboots.
Alternatively, a separate higher voltage domain can be used for the
design, however, this is not the preferred choice as a separate voltage
domain is not as readily available as the base frequency.

Third, there is a timing consideration for the BL core since the
CLKSCREW attack is identified after a PLL configuration is already
set in the control registers. Hence, the identification process must be
completed before the frequency change is applied to the victim core.
Frequency regulation is a relatively long procedure (in the time constant
of µs). Thus the goal is to hide the latency of BL core computation
within this phase-locking period of PLL circuits. We optimized the
microarchitecture of the BL core such that it can finish the computation
less than ~1 µs. Alternatively, although we do not pursue in this paper,
the PLL could be designed so as to be required to be flagged safe by the
mitigation circuit before regulating the frequency. This adds some cost
in PLL control logic and adds some latency to frequency regulation.

5.2. Microarchitecture
Fig. 10 shows the microarchitecture of the proposed BL core. We
designed each BL core to support one Krait core but multiple BL cores
can be consolidated to save hardware redundancies. It performs the

ISLPED’18, July 23-25, 2018, Seattle, WA, USA S. Zhang et al.

algorithm that we outlined in Sec. 4. The microarchitecture consists of
feature extraction, MLP, and decision. In the feature extraction, the
desired features are collected from regulator configuration registers and
also computed from simple feature extraction circuits such as a counter
for the PLL command interval. The features are modified through shift
and truncation operations to reach its appropriate value scale and bit
precision.

Weight memory

(for MLP)

Feature extraction

Feature register

Weight Register
Input/Activation

Register

MAC A

ReLU A

MAC B

ReLU B

 Decision

 Unit
Result Register

`

Timing

error

CLKSCREW

detection

Temp, VDD

Frequency

Configuration

Boundary

Register

Fig. 10. BL core microarchitecture

Fig. 11. BL core layout in a 65 nm CMOS

In the MLP, the main computational primitive is the multiply-

and-accumulate (MAC). The BL core needs to finish the calculation

on the classification task before the PLL operation. We, therefore,

include two MAC computing units (MAC A and MAC B in Fig. 10)

such that the computation delay of the BL core is shorter than the PLL

operation and allow the blacklist event to stop the PLL from applying

the fault-inducing frequency setting to the victim core.

The decision unit takes the output of MLP and compares it against

the decision boundary. It also takes the timing error flag from TRC or

EDAC and adjusts the boundary if it finds a discrepancy between the

MLP output and the timing error flag.

We designed the BL core in Verilog HDL and implement it in a

65nm CMOS process through the standard cell design flow. Fig. 11

shows the layout whose area is 0.09 (=0.6 × 0.15) mm2. As marked,

close to 50% of the area is used by the weight memory for the MLP

operation. It is implemented in an industrial 6-T SRAM array. A single

Krait core takes ~2.6 mm2 in a 28 nm [17]. The normalized area of the

BL core is thus ~0.64% of that of the single Krait core. We further

characterized the delay and power consumption of the BL core via the

static timing and power analysis tools. We use the post-layout netlist

with annotated parasitics and actual switching vectors for nodes from

the Verilog simulation of the netlist. The accuracy of the flow is

calibrated to match the SPICE simulation for a benchmark circuit. The

BL core consumes 10.5mW at the clock frequency of 250 MHz and

the supply voltage of 1V. It takes about 280 cycles to complete one

detection and boundary adjustment if needed. The total latency is

simulated to be 1.11 µs.

6. CONCLUSION
In this paper, we propose a dynamic blacklisting technique to detect and
mitigate the power-management based fault injection attack titled
CLKSCREW. We devised an algorithm which performs feature
extraction, dimensionality reduction, and decision. The algorithm is
trained in the design time and also supports online adjustment. We
designed the BL core hardware that performs the algorithm. The BL
core is optimized to make a minimal impact on silicon area and power
dissipation. The decision latency of the core is also optimized to the
level that can be hidden in a typical PLL locking latency.

ACKNOWLEDGEMENT
The project is in part supported by NSF (CCF-1453142), Catalyst
Foundation, and DARPA (HR0011-18-C-0017)

REFERENCE
[1] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: exposing the

perils of security-oblivious energy management”. USENIX Security
Symposium, 2017.

[2] ARM. Security Technology - Building a Secure System using TrustZone
Technology. ARM Technical White Paper, 2009.

[3] S. Kim, and M. Seok, “Analysis and Optimization of In-Situ Error
Detection Techniques in Ultra-Low-Voltage Pipeline,” IEEE/ACM
International Symposium on Low Power Electronics and Design, 2014,
pp. 291-294.

[4] V. Pallipadi, and A. Starikovskiy, “The on-demand governor.” Linux
Symposium, 2006, vol. 2, sn, pp. 215–230.

[5] B. Jeff, “big.LITTLE system architecture from arm: Saving power
through heterogeneous multiprocessing and task context migration,”

ACM/IEEE Design Automation Conference (DAC), 2012

[6] Intel The Engine for Digital Transformation in the Data Center.
http://www.intel.com/content/dam/www/public/us/en/documents/produc

t-briefs/xeon-e 5-brief.pdf. Intel Product Brief. .

[7] QUALCOMM. Snapdragon S4 Processors: System on Chip Solutions
for a New Mobile Age.

https://www.qualcomm.com/documents/snapdragon-s4-processors-sys

tem-chip-solutions-new-mobile-age, Jul 2013.
[8] I. Anati, et al., “Innovative technology for CPU based attestation and

sealing,” International workshop on hardware and architectural support

for security and privacy (HASP), 2013, vol. 13.
[9] R. Kumar, V. Kursun, “Reversed temperature-dependent propagation

delay characteristics in nanometer CMOS circuits,” IEEE Transactions

on Circuits and Systems II: Express Briefs. 2006 Oct;53(10):1078-82.
[10] D. E. Rumelhart, et al., “Learning representations by back-propagating

errors,” Nature. 1986 Oct; 323(6088):533.
[11] S. Kim, M. Seok, “Variation-Tolerant Near-threshold Microprocessor

Design with Low-Overhead, Within-a-Cycle In-situ Error Detection and
Correction Technique,” IEEE Journal of Solid-State Circuits, 2015

[12] S. Kim, et al., “A 450mV Timing-Margin-Free Waveform Sorter based
on Body Swapping Error Correction,” IEEE Symposium on VLSI
Circuits (VLSI), 2016

[13] S. Kim, et al., “Near-Vt Adaptive Microprocessor and Power-
Management-Unit System based on Direct Error Regulation,” European
Solid-State Circuits Conference (ESSCIRC), 2017

[14] J. Tschanz, et al., “Tunable replica circuits and adaptive voltage-
frequency techniques for dynamic voltage, temperature, and aging
variation tolerance,” IEEE Symposium on VLSI Circuits (VLSI), 2009

[15] B. Zimmer, et al., “A RISC-V vector processor with tightly-integrated
switched-capacitor DC-DC converters in 28nm FDSOI,” IEEE
Symposium on VLSI Circuits, 2015

[16] X. Sun, et al., “A Combined All-Digital PLL-Buck Slack Regulation
System with Autonomous CCM/DCM Transition Control and 82%
Average VoltageMargin Reduction in a 0.6-to-1.0V Cortex-M0
Processor,” IEEE International Solid-State Circuits Conference
(ISSCC), 2018

[17] Introducing NVIDA Tegra 4i. URL: http://phx.corporate-
ir.net/External.File?item=UGFyZW50SUQ9MTcyNDc2fENoaWxkSU
Q9LTF8VHlwZT0z&t=1

	CCS CONCEPTS
	KEYWORDS
	1. INTRODUCTION
	2. CLKSCREW ATTACK
	2.1. Background
	2.2. Fault Injection Mechanism

	3. STATIC PROTECTION
	4. DYNAMIC DETECTION & PROTECTION
	5. BLACKLIST CORE DESIGN
	5.1. System Architecture
	5.2. Microarchitecture

	6. CONCLUSION

