NEZHA: Efficient Domain-Independent Differential Testing

Theofilos Petsios*, Adrian Tang*, Salvatore Stolfo, Angelos D. Keromytis, and Suman Jana

IEEE Security & Privacy (Oakland) 2017

*Joint primary authors

• Fuzzing: memory corruption bugs

Differential testing: logic bugs

- Multiple apps of the same functionality
- Applications usually follow some specification/standard

- Multiple apps of the same functionality
- All usually to follow some specification/standard
- Deviations from the specifications/standards likely to be bugs

- Multiple apps of the same functionality
- All usually to follow some specification/standard
- Deviations from the specifications/standards likely to be bugs

- Multiple apps of the same functionality
- All usually to follow some specification/standard
- Deviations from the specifications/standards likely to be bugs

Applicable in different domains (e.g., compiler testing)

Key challenges

Existing tools are domain-specific

Inefficient input generation

Goal of NEZHA

Efficient domain-independent differential testing

All possible code paths

Input Corpus

Per-Input
Coverage

Input Corpus

Per-Input

Coverage

Code coverage - Input

Input Corpus

All possible code paths

Code coverage - Global

Per-Input
Coverage

Code coverage - Input

Input Corpus

All possible code paths

Code coverage - Global

Per-Input
Coverage

Code coverage - Input

Input Corpus

Per-Input

Coverage

Input Corpus

Per-Input

Coverage

Code coverage - Input

Input Corpus

Per-Input

Coverage

Input 3

Input 4

Input Corpus All possible code paths Input 3 Input 1 Input 2 Code coverage - Global Per-Input Coverage Code coverage - Input

Evolutionary Differential Testing - Multiple-Apps

What are the options to driving input generation?

- 1. Use program states solely from single application, like most modern fuzzers
- 2. Use global program states combined across all applications
- Re-design guidance engine geared towards differential testing

Evolutionary Differential Testing - Multiple-Apps

What are the options for driving input generation?

- Use program states solely from single application, like most modern fuzzers
- 2. Use global program states combined across all applications
- Re-design guidance engine geared towards differential testing

Key Insight

Techniques that work well in the context of single application testing may not be optimal for differential testing!

Coverage

Code coverage - Input

Input Corpus

All possible code paths

Code coverage - Global
Per-Input
Coverage

Code coverage - Input

Coverage

Code coverage - Input

Input 3

Input Corpus Input 1 Input 2 All possible code paths

Code coverage - Global

Code coverage - Input

Code coverage - Input

- These inputs exercise disproportionate code regions in the two apps
- · This disproportion might imply differences in handling logic
- Retaining them in corpus speed up process of finding discrepancies

Relative program behavior is important in this context!

δ-diversity: a new approach to guided differential testing

- Obtain State Information
 - White-box (e.g., at compile time)
 - Gray-box (e.g., using Dynamic Binary Instrumentation)
 - Black-box (e.g., only examining system response to inputs)
- Behavioral Diversity

- Two examples:
 - Gray-box
 - Black-box
- Both outperform code coverage

Path δ-diversity: gray-box

Keep track of unique edges

Path δ-diversity: gray-box

Keep track of unique edges

Output δ-diversity: black-box

δ-diversity

Domain Independence

Efficient differential guidance

Implementation

- NEZHA prototype
- Gray-box and black-box δ-diversity metrics
 - Path δ-diversity (fine & coarse)
 - Output δ-diversity
- Domain-independent input generation
 - Evolutionary, feedback-guided
- Built upon libFuzzer with NEZHA-specific hooks
- 1545 lines of C++

Use cases

SSL libraries

PDF readers

OpenSSL Cryptography and SSL/TLS Toollot

ClamAV & XZ Parsers

Use cases

SSL libraries

PDF readers

OpenSSL Crystography and SSL/TLS Toolkit

ClamAV & XZ Parsers

Certificate Verification Discrepancies

One library accepts one certificate, while another rejects it with an error code.

	LibreSSL	BoringSSL	wolfSSL	mbedTLS	GnuTLS
OpenSSL	10	1	8	33	25
LibreSSL	-	11	8	19	19
BoringSSL	-	-	8	33	25
wolfSSL	-	-	-	6	8
mbedTLS	-	-	-	-	31

Unique pair-wise discrepancies (based on error code tuples)

Nezha vs domain-specific frameworks

- 52x more discrepancies than Frankencerts
- 27x more discrepancies than *Mucerts*

Nezha vs popular evolutionary fuzzers

- Adapted popular evolutionary fuzzers for differential testing
 - Code coverage in single application
 - Global code coverage
- 6x more discrepancies than testing on a single application
- 30% more discrepancies than modified libFuzzer

Sample Bugs uncovered by **NEZHA** (disclosed and patched)

Experimental Setting

Application Category	Tests	
SSL Libraries	OpenSSL, LibreSSL, BoringSSL, GnuTLS, wolfSSL, mbedTLS	
PDF Readers	Evince PDF, MuPDF, Xpdf	
Parsers	ClamAV vs binutils ClamAV vs xz	

CLAMAV (ELF parsing engine)

CLAMAV (ELF parsing engine)

```
static int cli_elf_fileheader(...) {

switch(file_hdr->hdr64.e_ident[4]) {
  case 1:
        ...
  case 2:
        ...
  default:
        ...
  return CL_EFORMAT;
        ...
```


CLAMAV (ELF parsing engine)

```
static int cli_elf_fileheader(...) {

switch(file_hdr->hdr64.e_ident[4]) {
  case 1:
        ...
  case 2:
        ...
  default:
        ...
  return CL_EFORMAT;
        ...
```

LINUX ELF loader

```
static int load_elf_binary(struct linux_binprm *bprm) {
    ...
    retval = -ENOEXEC;
    if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
        goto out;
    if (loc->elf_ex.e_type != ET_EXEC &&
            loc->elf_ex.e_type != ET_DYN)
        goto out;
    if (!elf_check_arch(&loc->elf_ex))
        goto out;
    ...
```


CLAMAV (ELF parsing engine)

```
static int cli_elf_fileheader(...) {

switch(file_hdr->hdr64.e_ident[4]) {
  case 1:
        ...
  case 2:
        ...
  default:
        ...
  return CL_EFORMAT;
        ...
```

LINUX ELF loader

```
static int load_elf_binary(struct linux_binprm *bprm) {
    ...
    retval = -ENOEXEC;
    if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
        qoto out;
    if (loc->elf_ex.e_type != ET_EXEC &&
            loc->elf_ex.e_type != ET_DYN)
        goto out;
    if (!elf_check_arch(&loc->elf_ex))
        goto out;
    ...
```


Bug 2: LibreSSL misinterprets time in ASN.1 format

Time fields can be formatted in 2 ways:

UTC: YYMMDDHHMMSSZ (13 char long)

GMT: YYYYMMDDHHMMSSZ (15 char long)

Time fields can be formatted in 2 ways:

UTC: YYMMDDHHMMSSZ (13 char long)

GMT: YYYYMMDDHHMMSSZ (15 char long)

LibreSSL ignores the ASN.1 time format tag, and determines format based on length of field


```
int asn1_time_parse(..., size_t len, ..., int mode) {
  int type = 0;
  /* Constrain to valid lengths. */
  if (len != UTCTIME_LENGTH && len != GENTIME_LENGTH)
    return (-1);
  switch (len) {
  case GENTIME LENGTH:
   // mode is "ignored" -- configured to 0 here
   if (mode == V_ASN1_UTCTIME)
      return (-1);
    type = V_ASN1_GENERALIZEDTIME;
  case UTCTIME_LENGTH:
    if (type == 0) {
      if (mode == V_ASN1_GENERALIZEDTIME)
       return (-1);
      type = V_ASN1_UTCTIME;
    // parse time as UTCTIME
```

LibreSSL ignores the ASN.1 time format tag, and determines format based on length of field


```
int asn1_time_parse(..., size_t len, ..., int mode) {
  int type = 0;
  /* Constrain to valid lengths. */
  if (len != UTCTIME_LENGTH && len != GENTIME_LENGTH)
    return (-1);
  switch (len) {
  case GENTIME LENGTH:
   // mode is "ignored" -- configured to 0 here
    if (mode == V_ASN1_UTCTIME)
      return (-1);
    type = V_ASN1_GENERALIZEDTIME;
  case UTCTIME_LENGTH:
    if (type == 0) {
      if (mode == V_ASN1_GENERALIZEDTIME)
       return (-1);
      type = V_ASN1_UTCTIME;
    // parse time as UTCTIME
```

LibreSSL ignores the ASN.1 time format tag, and determines format based on length of field


```
int asn1_time_parse(..., size_t len, ..., int mode) {
  int type = 0;
  /* Constrain to valid lengths. */
  if (len != UTCTIME_LENGTH && len != GENTIME_LENGTH)
    return (-1);
  switch (len) {
  case GENTIME LENGTH:
    // mode is "ignored" -- configured to 0 here
    if (mode == V_ASN1_UTCTIME)
      return (-1);
    type = V_ASN1_GENERALIZEDTIME;
  case UTCTIME_LENGTH:
    if (type == 0) {
      if (mode == V_ASN1_GENERALIZEDTIME)
       return (-1);
      type = V_ASN1_UTCTIME;
    // parse time as UTCTIME
```

LibreSSL ignores the ASN.1 time format tag, and determines format based on length of field

Jan 1 01:01:00 2012 GMT can interpreted as Dec 1 01:01:01 2020 GMT

Conclusions

δ-diversity outperforms code coverage for differential testing

NEZHA: Domain independent, efficient differential testing

 Differential testing should be integrated, when possible, into the testing cycle

https://github.com/nezha-dt

Backup Slides

NEZHA: Architecture

Nezha: Architecture

Application Address Space


```
clang++ -c -g -O2 -std=c++11 Fuzzer/*.cpp -IFuzzer ar ruv libFuzzer.a Fuzzer*.o
```

```
#include <openssl/evp.h>
extern "C"
int LLVMFuzzerTestOneInput(const uint8_t *buf, size_t len) {
   const uint8_t *bufp = buf;
   EVP_PKEY_free(d2i_AutoPrivateKey(NULL, &bufp, len));
   return 0;
}
```


Nezha: Architecture

Discrepancy Distribution for SSL/TLS Libs

