
CLKSCREW

Exposing the Perils of Security-Oblivious Energy Management

USENIX Security 2017

Adrian Tang, Simha Sethumadhavan, Salvatore Stolfo

Energy Management
Today’s systems cannot exist without

Source: Adapted from S. Borkar (Intel)

power density

functionalities

i386
i486

Pentium
Pentium Pro

Pentium II

Pentium III

Hot plate

Nuclear reactor

Rocket nozzle
Sun’s surface

Energy Management
Today’s systems cannot exist without

AcademiaIndustry

frequency

power
energy

voltage

Source: Word-cloud from ISCA, ASPLOS, MICRO, HPCA (2000 - 2016)

Energy Management
Today’s systems cannot exist without

Complicated

Pervasive

Essential

Energy Management
Today’s systems cannot exist without

stay secure with

Energy Management
Exploiting software interfaces to

Software-based
attacker

Stretch
operational limits

fr
eq

ue
nc

y

voltage

Induce faults

decryption

key

Energy Management
Exploiting software interfaces to

Software-based
attacker

Stretch
operational limits

fr
eq

ue
nc

y

voltage

Induce faults

decryption

key

Traditional fault attacks
Need physical proximity

Need separate equipment
Soldering, crocodile clips, wire, etc

Energy Management
CLKSCREW: Exposing the perils of security-oblivious

New attack vector that exploits energy management

Practical attack on trusted computing on ARM devices

Impacts hundreds of millions of deployed devices

Lessons for future energy management designs to be security-conscious

I. DVFS and
Regulators

II. The CLKSCREW

Attack
III. Attacking ARM

Trustzone

IV. Concluding
Remarks

Dynamic Voltage and Frequency Scaling (DVFS)

Energy consumption

Frequency

Voltage

DVFS

Hardware & Software Support for DVFS

Software

Hardware

DVFS

Frequency
Regulator

Voltage
Regulator

Power Governor

Vendor Device Driver

Memory-Mapped Registers

Hardware Regulators and Software Interfaces

SoC Processor
(Nexus 6)

SPM
(All cores)Core 0

Voltage
Control

Voltage Domain
(All cores)

PMA8084
PMIC

Voltage output
to cores

Input

Voltage output
to other peripherals

0
1
2
3

Core 0Core 0Core 0
Clock
MUX Core

Clock Domain (per-core)

PLL
(fixed rate)

HFPLL
(variable rate)

Half
Divider

300 MHz

N * 19.2 MHz

N/2 * 19.2 MHz

N Multiplier Source Selector

0

1

2

SoC Processor
(Nexus 6)

Operating frequency and voltage can be configured
via memory-mapped registers from software

Frequency regulators Voltage regulators

Do hardware regulators impose limits
to frequency/voltage changes?

Frequency / Voltage Operating Point Pairs (OPPs)

Vendor-recommended
Legend:

Nexus 6

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
9oOtagH (9)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

)
rH

q
u

H
n

F
y
 (

G
H

z
)

1HxuV 6

0axiPuP 233

9HnGor VtoFN 233

Voltage (V)

Fr
eq

ue
nc

y
(G

H
z)

Lower voltage
Lower minimum required
frequency to induce instability

No safeguard hardware limits

Max OPP reached before instability

Legend:
Vendor-recommended

Frequency / Voltage Operating Point Pairs (OPPs)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
9oOtagH (9)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

)
rH

q
u

H
n

F
y
 (

G
H

z
)

1HxuV 6

0axiPuP 233

9HnGor VtoFN 233

Voltage (V)

Fr
eq

ue
nc

y
(G

H
z)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
9oOtagH (9)

0.5

1.0

1.5

2.0

2.5

)
rH

q
u

H
n

Fy
 (

G
H

z)

1HxuV 6P (A57 FOuVtHr ForH)

0axiPuP 2PP

9HnGor VtoFN 2PP

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
9oOtagH (9)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

)
rH

q
u

H
n

Fy
 (

G
H

z)

3ixHO ("3HrforPanFH" FOuVtHr ForH)

0axiPuP 233

9HnGor VtoFk 233

Frequency / Voltage Operating Point Pairs (OPPs)
Fr

eq
ue

nc
y

(G
H

z)

Fr
eq

ue
nc

y
(G

H
z)

Voltage (V) Voltage (V)

Device ‘A’ Device ‘B’

Does DVFS operate across security boundaries?

Trusted Execution Environments (TEE)

Is DVFS Trustzone-Aware?

CPU Core

Trustzone
Trusted code

Normal
Untrusted code

Hardware-enforced isolation

Frequency & Voltage Regulators

Regulator HW-SW interface

Frequency and voltage changes

No!

I. DVFS and
Regulators

II. The CLKSCREW

Attack
III. Attacking ARM

Trustzone

IV. Concluding
Remarks

Can we attack Trustzone code execution
using software-only control of the regulators?

Induce timing faults

confidentiality
integrity

availability

How do faults occur (due to over-raising frequency)?

1
flip-flop flip-flop

input output input output

CLK signal

1intermediate logic path
input

1
output

11

How do faults occur (due to over-raising frequency)?

flip-flop flip-flop
input output input output

CLK signal

intermediate logic path
input output

10

higher frequency

0

less time for data
to propagate⟹

‘1’
timing violation

‘0’
⟹

How do faults occur (due to over-raising frequency)?

Expected: … a777511b …

Faulty output: … a7775151 …

CLKSCREW Challenges & Solutions

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Addressed earlier in DVFS regulators

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
9oOtagH (9)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

)
rH

q
u

H
n

Fy
 (

G
H

z)

1HxuV 6

0axiPuP 233

9HnGor VtoFN 233

CLKSCREW Challenges & Solutions

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Cores have different frequency regulators

Core pinning

Coretarget

Coreattack

attack
thread

victim
thread

start
fault

end
fault

code execution
to inject fault

CLKSCREW Challenges & Solutions

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Disable interrupts during attack

Core pinning

Coretarget

Coreattack

attack
thread

victim
thread

start
fault

end
fault

code execution
to inject fault

disable
interrupts

enable
interrupts

CLKSCREW Challenges & Solutions

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution Cache-based execution timing profiling

High-precision timing loops in attack
architecture

Victim thread

~1,100,000,000,000 clock cycles

~65,000 clock cycles

asm volatile("1: subs %0, %0, #1 \n"
 " bhi 1b \n"::"r" (loops));

CLKSCREW Challenges & Solutions

I. DVFS and
Regulators

II. The CLKSCREW

Attack
III. Attacking ARM

Trustzone

IV. Concluding
Remarks

Subverting Trustzone Isolation with CLKSCREW

Trustzone Normal

secret
key ciphertext

plaintext

Confidentiality Attack
infer secret AES key stored
within Trustzone

AES
decryption

I.
Trustzone Normal

RSA
decryption

plaintext
hash

#
SHA-256

hash
verify &

load app

== signed app

Integrity Attack
load self-signed app into
TrustzoneII.

app binary

digital
signature

public key

(More details in the paper…)

Key Inference Attack: Threat Model

Victim app: AES decryption app executing in Trustzone

Trustzone Normal

secret
key

AES
Decryptor ciphertext

plaintext

Attacker’s goal: Get secret AES key from outside Trustzone

Attacker’s capabilities: 1) Can repeatedly invoke the decryption app
 2) Has software access to hardware regulators

CLKSCREW

Trustzone Normal

secret
key ciphertextAES

decryption

Faulty

Differential
Fault Analysis [1]

Key Inference Attack: Summary

faulty
plaintext

 Idea: Induce a fault during the AES decryption
Infer key from a pair of correct and faulty plaintext

Trustzone Normal

secret
key ciphertext

correct
plaintext

AES
decryption

Correct

CLKSCREW

[1] Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

secret
key

Key Inference Attack: CLKSCREW Parameters

Differential Fault Analysis needs CLKSCREW to deliver a
one-byte fault to the 7th AES round

Base voltage:

Low frequency:

High frequency:

Fault injection duration:

1.055V

3.69GHz

2.61GHz

680 no-op loops (~39 μsec)

Key Inference Attack: Timing Profiling

Execution timing of Trustzone code can be profiled with
hardware cycle counters that are accessible outside of Trustzone

How varied is the execution timing of the victim decryption app?
Victim AES Thread

Execution time (in clock cycles)

N
or

m
ali

ze
d

fre
qu

en
cy

Not too much variability in terms of execution time

Key Inference Attack: Timing Profiling

Can we effectively control the timing of the fault delivery with no-op loops?
Attack Thread

Number of no-op loops is a good proxy to control timing of fault delivery

Key Inference Attack: Timing Profiling

Our fault model requires our attack to inject fault

Exactly one AES round at the 7th round

Corruption of exactly one byte

Key Inference Attack: Fault Model

1 2 3 4 5 6 7 8
of faulted AE6 rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
o
rm

a
liz

e
d

 f
re

q
u

e
n

cy

1 3 5 7 9 11 13 15
of faulted Eytes within one round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
o
rm

a
liz

e
d

 f
re

q
u

e
n

cy

Precision: How likely can we inject fault in exactly one AES round?

More than 60% of the resulting faults are precise enough to corrupt exactly
one AES round

Key Inference Attack: Fault Model

1 2 3 4 5 6 7 8
of faulted AE6 rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
o
rm

a
liz

e
d

 f
re

q
u

e
n

cy

1 3 5 7 9 11 13 15
of faulted Eytes within one round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
o
rm

a
liz

e
d

 f
re

q
u

e
n

cy

Transience: How likely can we corrupt exactly one byte?

Out of the above faults that affect one AES round, more than half are transient
enough to corrupt exactly one byte

Key Inference Attack: Fault Model

Controlling Fpdelay allows us to precisely time the delivery
of the fault to the targeted AES round

0.0 0.2 0.4 0.6 0.8 1.0

Cycle length ratio: ggNTattack/ggNTtarget

0

1

2

3

4

5

6

7

8

9

10

C
o
rr

u
S

te
d

 A
E

6
 r

o
u

n
d

Statistics:
~20 faulting attempts to induce one-byte fault to desired AES round.
~12 min on a 2.7GHz quad core CPU to generate 3650 key hypotheses

Key Inference Attack: Results

I. DVFS and
Regulators

II. The CLKSCREW

Attack
III. Attacking ARM

Trustzone

IV. Concluding
Remarks

Attack Applicability to Other Platforms

Energy management mechanisms in the industry is trending towards
finer-grained and increasingly heterogeneous designs

v8

Cloud computing providers

Possible Defenses

Hardware-Level
Operating limits in hardware
Separate cross-boundary regulators
Microarchitectural Redundancy

Software-Level
Randomization
Code execution redundancy

Energy Management
CLKSCREW: Exposing the perils of security-oblivious

New attack surface via energy management software interfaces

Not a hardware or software bug
Fundamental design flaw in energy management mechanisms

Future energy management designs must take security into consideration

Adrian Tang - @0x0atang
Simha Sethumadhavan, Salvatore Stolfo

USENIX Security 2017

