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Traditional fault attacks
Need physical proximity

Need separate equipment
Soldering, crocodile clips, wire, etc



Energy Management
CLKSCREW: Exposing the perils of security-oblivious

New attack vector that exploits energy management

Practical attack on trusted computing on ARM devices

Impacts hundreds of millions of deployed devices

Lessons for future energy management designs to be security-conscious
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Dynamic Voltage and Frequency Scaling (DVFS)
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Hardware & Software Support for DVFS
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Hardware Regulators and Software Interfaces
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Do hardware regulators impose limits 
to frequency/voltage changes?



Frequency / Voltage Operating Point Pairs (OPPs)
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Lower voltage       
Lower minimum required 
frequency to induce instability

No safeguard hardware limits

Max OPP reached before instability

Legend:
Vendor-recommended

Frequency / Voltage Operating Point Pairs (OPPs)
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Does DVFS operate across security boundaries?

Trusted Execution Environments (TEE)



Is DVFS Trustzone-Aware?

CPU Core

Trustzone
Trusted code

Normal
Untrusted code

Hardware-enforced isolation

Frequency & Voltage Regulators

Regulator HW-SW interface

Frequency and voltage changes

No!



I. DVFS and 
Regulators

II. The CLKSCREW

Attack
III. Attacking ARM

Trustzone

IV. Concluding
Remarks



Can we attack Trustzone code execution
using software-only control of the regulators?



Induce timing faults

confidentiality
integrity

availability



How do faults occur (due to over-raising frequency)?
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How do faults occur (due to over-raising frequency)?

flip-flop flip-flop
input output input output

CLK signal

intermediate logic path
input output 
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higher frequency

0

less time for data 
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‘1’
timing violation

‘0’
⟹



How do faults occur (due to over-raising frequency)?

Expected: … a777511b …

Faulty output: … a7775151 …



CLKSCREW Challenges & Solutions

#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution



#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Addressed earlier in DVFS regulators
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#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Cores have different frequency regulators

Core pinning

Coretarget

Coreattack

attack
thread

victim
thread

start
fault

end
fault

code execution 
to inject fault

CLKSCREW Challenges & Solutions



#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution

Disable interrupts during attack

Core pinning

Coretarget

Coreattack

attack
thread

victim
thread

start
fault

end
fault

code execution 
to inject fault

disable
interrupts

enable
interrupts

CLKSCREW Challenges & Solutions



#1: Regulator operating limits

#2: Self-containment within same device

#3: Noisy complex OS environment

#4: Precise timing

#5: Fine-grained timing resolution Cache-based execution timing profiling

High-precision timing loops in attack 
architecture

Victim thread

~1,100,000,000,000 clock cycles

~65,000 clock cycles

asm volatile("1:  subs %0, %0, #1 \n" 
             "    bhi 1b  \n"::"r" (loops));

CLKSCREW Challenges & Solutions
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Subverting Trustzone Isolation with CLKSCREW

Trustzone Normal

secret  
key ciphertext

plaintext

Confidentiality Attack
infer secret AES key stored 
within Trustzone

AES 
decryption

I.
Trustzone Normal

RSA 
decryption

plaintext 
hash

#
SHA-256  

hash
verify & 

load app

== signed app

Integrity Attack
load self-signed app into 
TrustzoneII.

app binary

digital  
signature

public key

(More details in the paper…)



Key Inference Attack: Threat Model

Victim app: AES decryption app executing in Trustzone

Trustzone Normal

secret 
key

AES
Decryptor ciphertext

plaintext

Attacker’s goal: Get secret AES key from outside Trustzone

Attacker’s capabilities: 1) Can repeatedly invoke the decryption app
                               2) Has software access to hardware regulators

CLKSCREW



Trustzone Normal

secret 
key ciphertextAES

decryption

Faulty

Differential 
Fault Analysis [1]

Key Inference Attack: Summary

faulty
plaintext

      Idea: Induce a fault during the AES decryption
Infer key from a pair of correct and faulty plaintext

Trustzone Normal

secret 
key ciphertext

correct
plaintext

AES
decryption

Correct

CLKSCREW

[1] Tunstall et al. Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault. In IFIP International Workshop on Information Security Theory and Practices (2011).

secret 
key



Key Inference Attack: CLKSCREW Parameters

Differential Fault Analysis needs CLKSCREW to deliver a 
one-byte fault to the 7th AES round

Base voltage:

Low frequency:

High frequency:

Fault injection duration: 

1.055V

3.69GHz

2.61GHz

680 no-op loops (~39 μsec)



Key Inference Attack: Timing Profiling

Execution timing of Trustzone code can be profiled with 
hardware cycle counters that are accessible outside of Trustzone



How varied is the execution timing of the victim decryption app?
Victim AES Thread

Execution time (in clock cycles)

N
or
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Not too much variability in terms of execution time

Key Inference Attack: Timing Profiling



Can we effectively control the timing of the fault delivery with no-op loops?
Attack Thread

Number of no-op loops is a good proxy to control timing of fault delivery

Key Inference Attack: Timing Profiling



Our fault model requires our attack to inject fault

Exactly one AES round at the 7th round

Corruption of exactly one byte

Key Inference Attack: Fault Model
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Precision: How likely can we inject fault in exactly one AES round?

More than 60% of the resulting faults are precise enough to corrupt exactly 
one AES round

Key Inference Attack: Fault Model
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Transience: How likely can we corrupt exactly one byte?

Out of the above faults that affect one AES round, more than half are transient 
enough to corrupt exactly one byte

Key Inference Attack: Fault Model



Controlling Fpdelay allows us to precisely time the delivery 
of the fault to the targeted AES round
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Statistics:
~20 faulting attempts to induce one-byte fault to desired AES round.
~12 min on a 2.7GHz quad core CPU to generate 3650 key hypotheses

Key Inference Attack: Results
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Attack Applicability to Other Platforms

Energy management mechanisms in the industry is trending towards 
finer-grained and increasingly heterogeneous designs

v8

Cloud computing providers



Possible Defenses

Hardware-Level
Operating limits in hardware
Separate cross-boundary regulators
Microarchitectural Redundancy

Software-Level
Randomization
Code execution redundancy



Energy Management
CLKSCREW: Exposing the perils of security-oblivious

New attack surface via energy management software interfaces

Not a hardware or software bug
Fundamental design flaw in energy management mechanisms

Future energy management designs must take security into consideration

Adrian Tang - @0x0atang
Simha Sethumadhavan, Salvatore Stolfo

USENIX Security 2017


